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Abstract 

A New Feature Selection Method based on Class Association Rule 

by 

Sami Al-Dhaheri 

Adviser: Professor Abdullah Uz Tansel 

Feature selection is a key process for supervised learning algorithms. It involves discarding 

irrelevant attributes from the training dataset from which the models are derived. One of the vital 

feature selection approaches is Filtering, which often uses mathematical models to compute the 

relevance for each feature in the training dataset and then sorts the features into descending order 

based on their computed scores. However, most Filtering methods face several challenges 

including, but not limited to, merely considering feature-class correlation when defining a feature’s 

relevance; additionally, not recommending which subset of features to retain. Leaving this decision 

to the end-user may be impractical for multiple reasons such as the experience required in the 

application domain, care, accuracy, and time. In this research, we propose a new hybrid Filtering 

method called Class Association Rule Filter (CARF) that deals with the aforementioned issues by 

identifying relevant features through the Class Association Rule Mining approach and then using 

these rules to define weights for the available features in the training dataset. More crucially, we 

propose a new procedure based on mutual information within the CARF method which suggests 

the subset of features to be retained by the end-user, hence reducing time and effort. Empirical 

evaluation using small, medium, and large datasets that belong to various dissimilar domains 

reveals that CARF was able to reduce the dimensionality of the search space when contrasted with 

other common Filtering methods. More importantly, the classification models devised by the 
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different machine learning algorithms against the subsets of features selected by CARF were 

highly competitive in terms of various performance measures. These results indeed reflect the 

quality of the subsets of features selected by CARF and show the impact of the new cut-off 

procedure proposed. 
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1 

Chapter One 

1. Introduction

1.1 Introduction 

In the era of big data, the importance of generating intelligence from large databases is growing 

significantly due to advances in computer networks, hardware, and mobile technology. Datasets 

of different business domains are often associated with high dimensionality (they consist of a large 

number of features), contain noise (duplicate instances, missing values, inconsistencies, etc.), and 

consist of unstructured features (attributes that are hard to be represented in a relational database 

such as email content). These data characteristics make identifying the best set of features during 

the process of feature selection challenging as this task requires thorough pre-processing and 

domain knowledge availability [25]. 

Before delving into the feature selection topic, it is important to understand what can be gained 

from machine learning. The key element of this process is that learning is from a massive amount 

of historical data. We label human and animal behaviors as intelligent as they include learning 

experiences, thus learning is intrinsic to human life. As humans we adjust and adapt to new 

scenarios daily; remembering, adapting, and generalizing are important parts of learning [108]. 

Generalizing is identifying similarities between different circumstances and applying the 

knowledge derived from one place in other appropriate places [22]. Learning becomes incredibly 

important as it involves knowledge and intelligence, so modelling these aspects into computers 

becomes fundamental [108]. The success of machine learning depends on many factors, primarily 

on the quality of input data, the number of data observations, type of learning, and variable types, 

among others. Data pre-processing to deal with noisy data is crucial for the machine learning 
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algorithm to ensure output quality and a smooth learning process. The data pre-processing phase 

comprises 90% of the work during the learning process and includes data cleansing, data 

normalization, data transformation, data balancing, feature extraction, feature selection, and others 

[122].  

Feature selection is a primary process that affects the outcome of predictive machine learning 

algorithms as it discards irrelevant features as early as possible and reduces the search space for 

the problem [80,169]. The aim of feature selection is to determine a set of features automatically 

based on a measure of relevance [79]. To be exact, in supervised learning tasks in which the goal 

is to predict a certain variable, users look for improvements in the classification learning algorithm 

in terms of predictive accuracy, training speed, and simplicity of the data representation. This can 

be accomplished using feature selection methods in which the efficiency of the learning process 

and building the classification models will be improved as a smaller number of features will be 

processed by the learning algorithm [21]. 

The quality of the data being processed may affect the learning process of the model of any 

classification algorithm based on the available noise which may deteriorate the model’s 

performance in terms of classification accuracy [50]. Hence, by adopting feature selection before 

learning, noisy attributes are usually removed to achieve desirable outcomes. More importantly, 

feature selection improves the performance by reducing the model’s overfitting; it establishes 

efficient learning, since only the selected attributes are considered during the learning phase while 

providing a deeper understanding of the underlying processes that are involved in data processing 

[123].  

Figure 1 shows the feature selection process (dashed blue line) as part of the supervised learning 

lifecycle (classification problems). Once the training dataset is loaded and data cleansing is 
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applied, the process of feature selection starts. Using feature selection methods, relevance for all 

features in the input dataset, other than the class, are detected. The output will be a complete set 

of features along with their corresponding relevance and a subset of which is passed to the 

classification algorithm for training to derive classification models. 

Figure 1: Feature Selection Phase of the Entire Learning Process 

One of the common feature selection methods used to efficiently identify the subset of features 

from the dataset prior to learning is the Filtering approach [27]. Using this approach, the relevance 

(score) of each feature in the training dataset is determined using a mathematical model and then 

the available features sorted based on the computed scores. The user is then left to choose which 

subset of features to retain in a difficult process that usually requires experience, accuracy, and 

care [72,140]. Common Filtering methods are Information Gain (IG), Chi-square testing (CST), 
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Odds Ratio (OR), Gain Ratio (GR), and Symmetrical Uncertainty (SU), plus many others 

[138,98,137,184].     

Most Filtering methods merely consider the correlations between the available features and the 

class label to define relevance and ignore features’ similarity [19,35,149,161]. It is imperative to 

capture feature-to-feature correlations to discard redundant features otherwise the retained features 

will have a high level of redundancy; this may lead to increasing the search space for the machine 

learning algorithms as well as complicating the models derived [52,65,191].  In addition, the end-

user will have to manually check all possible features to reduce the similarity among features in 

the result—an onerous task if a massive number of features is found [26,140].  

Class Association Rule (CAR) mining is a promising classification approach that was initially 

developed by Liu, Hsu, and Ma (1998) [95] in an algorithm called Classification-based Association 

(CBA). This approach utilizes Association Rule mining methods to discover a subset of rules that 

can be represented as a classification model, and then in turn be used for forecasting purposes in 

classification problems [4,11,101,165]. Since the CAR mining approach ensures that each 

generated rule covers at least one data observation, this approach with some modifications can be 

utilized for feature selection to minimize feature similarity. 

This research investigates the problem of feature selection by developing a new Filtering method 

based on the CAR mining approach.  We develop a new Class Association Rule Filter method 

(CARF), which efficiently produces simple rules from the set of the available features in the 

training dataset, and then assigns scores to the available features. More importantly, CARF is 

associated with a new cut-off procedure that smartly recommends which subsets of features should 

be chosen thus saving the end-user vital resources including time, effort, and domain experience. 

Section 1.3 provides more details on the key contributions of this research.   
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CARF investigates features’ correlations in the training dataset to define their relevance based on 

learning rules. Then it prunes all irrelevant correlations, i.e. rules that are redundant, and keeps 

rules associated with just one feature value in the rule’s body. CARF ensures that rules learnt have 

no common training instances hence minimizing the similarities among features in the result set. 

These rules are then utilized to define the feature’s relevance. More details on the CARF method 

are given in Chapter Three.  

Some of the chapters in this dissertation are submitted for dissemination in reputable academic 

journals related to data processing and data mining. 

1.2 Research Problem, Aims, and Objectives 

Dimensionality reduction involves the pre-processing of high-dimensional data to eliminate 

unimportant features to produce the same or better performance in evaluating, visualizing, and 

modelling. The best way to reduce dimensionality is by feature selection i.e. choosing the input 

dimensions that represent the relevant features to solve a particular problem [79,190]. 

Feature selection can be considered part of the learning process of classification in machine 

learning. The main goal of classification algorithms is to construct a classification system (model) 

from an input dataset (training dataset). The model is then evaluated in terms of its predictive 

power against another dataset (test dataset) that the model did not encounter during the learning 

process [1]. During the supervised learning process, the complete set of attributes (features) is used 

to train the model from the training dataset. The role of feature selection, using a relevancy 

measure, comes prior to learning, and mainly to select the smallest relevant subset of features from 

the training dataset. This enhances the efficiency of the training phase in terms of computing 

resources with any features that are irrelevant (based on the defined relevancy measure) being 

discarded at an early stage. However, the definition of relevancy in supervised learning is not yet 
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well defined [19,107,117]. For example, relevancy could be defined as dissimilarity among 

features other than the class label, or it could be related to a certain user objective.  

The mathematical definition of feature selection is given below [79]: 

Let Ti, with 1≤ i ≤ n, be the search space of features (independent variables) Fi = {f1,f2,f2,…,fn}. 

The data instance Ei is the domain of Fi .A data instance in the space is defined as 

Ei=E1×E2×E3×…×En, and the independent variable (class label) C has a space of class labels. 

The aim is to construct a model as a function F:E→C according to the relevant features using the 

relevancy measures defined by the user. The subset of features chosen should preseve the complete 

features set in the training dataset. 

The ultimate aims of this research are to develop:  

1) A new feature selection method that reduces feature similarity and defines feature 

relevance using rules devised by the CAR approach.  

2) A new filtering method that provides the end-user with a clear indicative measure of how 

many features to retain thus simplifying the manual process of feature selection, at least in 

Filtering methods.  

The aims can be fulfilled using the below list of objectives:  

• To survey feature selection approaches in the literature  

• Critically analyze Filtering methods and show their advantages and disadvantages and the 

different mathematical models they utilize  

• Understand the CAR mining approach especially its way of discovering the rules  

• Investigate information theory methods to define a new metric for differentiating relevant 

from irrelevant features within Filtering methods  
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• Amend CAR mining to reduce feature-feature correlations based on data coverage   

• Design and implement a new Filtering method using high level language such as Java    

• Conduct in-depth experimentations on different classification datasets by evaluating the 

CARF and other state-of-the-art Filtering methods according to various performance 

metrics such as error rate, accuracy, recall, precision, and harmonic mean. 

The key research questions that this dissertation will answer are: 

1) How can we develop a new Filtering method that reduces features’ similarity using simple 

rules derived by CAR mining? 

2) How can we develop a new Filtering method that provides the end-user with an indicative 

measure of the number of features to choose in an automated manner?  

 

1.3 Class Association Rule Mining  

CAR mining is a special type of Association Rule Mining that deals with classification problems 

[119]. The input dataset will contain labelled instances, i.e. features as independent variables, and 

a class label as a dependent variable. The aim is to build a classification model that contains rules 

in the form 𝐶𝑙: 𝐹 → 𝐶 in which the antecedent of the rule contains conjunctive feature values, and 

the consequent is a class value [90]. Figure 2 depicts the main steps in a CAR mining algorithm. 

The CAR mining approach generates the rules, usually in two steps [2]: 

1) Discovering frequent itemsets (feature values with high frequency) (Definition 1)  

2) Generating the rules.  

The first step requires setting a threshold called the minimum support (minsupp) to a specific value 

as a measure for deciding which itemsets to keep during the training phase. An itemset (Definition 
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#5 in Chapter 3) consists of a combination of features values; for example, if the itemset contains 

1 feature value it is said to be 1-itemset and when it contains two features values it is said to be 2-

itemset, and so forth. Each itemset in the training dataset will be associated with a support, which 

denotes the frequency of the itemset in the training data set from the cardinality of that dataset. 

When the computed support of the itemset is larger than or equal to the minsupp threshold then 

that itemset is considered frequent, otherwise it will be infrequent. All frequent itemsets are stored 

in a data structure so they can be used to produce the rules in a later step; all infrequent itemsets 

are discarded as they do not hold any significant frequency power. 

The first step involves discovering frequent itemsets using algorithms such as Apriori, Frequent 

Pattern Growth (FP-Growth), CHARM, and DECLAT [7,56,186,187]. Frequent itemsets are 

features’ values with frequencies above a user-defined threshold called the minsupp. This step is 

exhaustive since it requires passing over the training dataset multiple times and a huge number of 

computations, i.e. calculating itemsets’ supports (frequencies), especially when the minsupp 

threshold is set by the user to a low value [124,166,167]. Most existing algorithms discover 

frequent itemsets in a repetitive manner starting with itemsets that contain a single feature value, 

i.e. frequent 1-itemset, then from these candidate 2-itemsets (2 features values) and those that have 

supports above the minsupp will be declared as frequent 2-itemsets. Then, frequent 2-itemsets are 

used to produce the candidate 3-itemset and so forth. The algorithm terminates when no more 

frequent itemsets are found in the training dataset. 

 



www.manaraa.com

9 

In generating the rules (Step 2), another threshold, called the minimum confidence (minconf), is 

employed. Each frequent itemset discovered in step (1) with two or more feature values will be 

considered a rule if its confidence value is larger than the minconf threshold. The confidence value 

of itemset (𝐴 → 𝐵) denotes the frequency of A & B occurring together in the training dataset from 

the frequency of A occurring by itself. Any paternal rule that has a confidence value above the 

minconf is generated, whereas any potential rules with confidence values below the minconf will 

be removed. The confidence value is a goodness measure for the rules where only rules with high 

correlations between the features’ values are kept. However, since the problem under consideration 

is a classification problem where the purpose is predicting the target class, then not all rules 

Figure 2: Class Association Rule Mining Main Steps 

eps
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generated (those which pass the minconf thresholds) are relevant. Only rules that have the class 

value on their consequent are required for prediction and therefore, all other rules will be ignored. 

Once rules are generated, then the CAR mining algorithm sorts them and invokes a rule-pruning 

procedure to further reduce redundant rules to retain only those that are highly predictive [13]. 

This pruning procedure is implemented against the training dataset to evaluate each rule by 

checking whether it has an actual data coverage. The procedure begins by sorting the available 

rules in descending order according to their confidence and support values. For each rule, the 

pruning procedure then checks if it has successfully covered any training instances; if the rule has 

no data coverage (the check returns a false value), it will be removed. However, if the check returns 

a true value then,  

a) The evaluated rule is inserted into the classification model

b) All training data instances covered by the evaluated rule will be marked for deletion.

The pruning procedure continues the process of evaluation until one of the two below conditions 

is met: 

1) All training instances are marked for deletion OR

2) All candidate rules have been evaluated.

When one of these two possible conditions is met, the pruning procedure terminates, and the CAR 

mining algorithm returns all rules that have been stored in the classification model. These rules are 

then used for predicting the class value of test data instances [10]. 

The CAR mining approach has advantages and disadvantages summarized in Table 1.1 

[3,11,159,164]. 
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Table 1.1: Advantages and Disadvantages of the Class Association Rule Mining Approach 

Class Association Rule Mining Advantages Class Association Rule Mining Disadvantages 

Produces simple classification models consisting of 

easy-to-interpret rules making this approach 

attractive for decision makers.  

The number of items in the rule can be massive.  

Easy to manually control the classification model. Rules cover limited numbers of data instances.  

Highly predictive performance in terms of 

classification accuracy in multiple application 

domains. 

Often the numbers of retained rules in the 

classification model is large when compared to 

Decision Trees or Rule Induction approaches.  

 

1.4 Issues and Contributions  

1.4.1 Issue 1: Feature Relevance   

 

The primary aim of performing feature selection is to discover a smaller set of features to represent 

the entire input dataset according to a specific measure. This is cost-effective in terms of 

computational cost, and more importantly, may lead to reduced overfitting of the model learnt by 

the learning algorithms [178,185]. In the Filtering approach, relevance is measured by how 

correlated the feature is with the class label by utilizing various measures for deriving the final 

subset of features [191]. For example, the ReliefF method  [142], estimates a feature’s score by 

computing the difference between the randomly chosen instance from the training dataset and its 

two closest instances with identical and opposite class labels. The IG method [137] computes a 

feature’s score using the entropy, which shows how well a feature splits the data samples using 

the class values in the training dataset [152]. Since most Filtering methods merely evaluate feature-

class correlations, there is potential for having redundancy among retained features. It will then be 
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the responsibility of the end-user to manually check these retained features to further filter them 

out, which is impractical when the number of retained features is high [26,140,168]. A more 

promising approach is to measure relevance based on both feature class and feature-feature 

correlations using supervised learning or new mathematical models. 

We intend to develop a new hybrid Filtering method that makes use of learning rules via CAR 

mining to compute the feature’s relevance. Using this approach, itemsets (feature values plus class 

value) are discovered from the training dataset in one single scan and then stored in an efficient 

vertical layout data structure (Line space). Within the data structure, each itemset is represented 

by ColumIDs:LineID to automatically locate its support and confidence value without having to 

scan the input dataset multiple times. In our proposed solution, we are only interested in finding 

frequent 1-itemsets in the format of (item value, class value), i.e. any itemset that has a single item 

(feature value) plus a class value. These frequent 1-itemsets are then converted into rules when 

they pass the minimum confidence threshold. They are then tested against the training dataset in 

an incremental manner, starting with the best one in terms of confidence, to eliminate any 

redundant rules. Once the complete non-redundant rules are retained then we use them to assign 

weights to the features in the training data. 

1.4.2 Issue 2: Indicative Cut-off Measure  

 

Most Filtering methods provide the end user with a complete set of sorted features [62,160]. 

Features sorted at the top probably have higher merit, yet this requires manual validation by a 

domain expert involving time and expertise [26]. To be exact, the availability of someone with in-

depth knowledge and an understanding of the data and the application domain is vital for the 

success of Filtering methods, particularly when dealing with high-dimensional datasets or 

applications with complex features. The domain expert defines features’ relevance and decides 
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which features should be discarded (irrelevant features) and those to be retained (relevant features). 

Relevance in this context does not correspond to the features set that yields best performance in 

terms of machine learning, but rather the smallest subset that the domain expert identifies from the 

results produced by the Filtering methods. It will be advantageous to have an indicative measure 

as to which features are important to ease the manual process of checking all features. 

For example, when dealing with domain applications such as for credit card scoring, Filtering 

methods such as IG favor features with many possible values, such as credit card number, as this 

uniquely occurs with every instance in the dataset. Therefore, this feature presumably will be 

positioned at the top of the result. Nevertheless, when the user carefully examines the resulting 

subset of features, the credit card number could be dropped as a useless feature. Other features 

such as age, gender, marital status, owning a house, owning a car, and having an unpaid student 

loan will be more useful for the domain expert and hence utilized to build classification models. 

This example, if limited, shows that the presence of a domain expert can be vital in filtering out 

results offered by Filtering methods in feature selection. Nevertheless, the availability of domain 

experts is not cost or time effective for institutions and businesses. A more realistic solution is to 

provide a cut-off to distinguish between potential relevant and irrelevant features in the results set. 

In this research we propose  a new indicative procedure that simplifies the difficult process of 

manually checking each feature and it can be embedded within the proposed CARF method to 

calculate a cut-off point based on the information in the input dataset and using mutual information 

to give the user an indication of how many features should be retained. This cut-off procedure 

ensures that fewer, yet impactful, features are retained by the end-user thus improving the 

efficiency of the feature selection process and without having to drastically impact on the quality 

of the classification models devised against the retained features set. Empirical results in Chapter 
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Four show that the proposed cut-off procedure provides end-users with highly relevant yet small 

subsets of features that, when processed by machine learning algorithms, derive competitive 

classification models in terms of predictive accuracy and other performance measures.   

1.4.3 Issue 3: Trial and Error  

 

Since relevance is defined according to various mathematical equations, different scores can be 

obtained. Consequently, the outcome provided to the end-user may vary substantially from one 

Filtering method to another and from one dataset to another, making it difficult for the user to 

decide which method to use  [72,139]. For instance, we ran three different Filtering methods 

namely IG, CFS, and Pearson Correlation [137,52,15] against the Sick dataset from UCI [94]. This 

dataset consisted of 30 features including the class label. Table 1.2 depicts the top five selected 

features of the considered Filtering method. The results, if limited, clearly reveal that the order of 

the features by the Filtering methods is different. Specifically, ReliefF selected ‘Referral Source’ 

as the best feature whereas the Gain Ratio and Pearson Correlation methods selected ‘T3’. More 

importantly, the subsets of results produced by the considered Filtering methods are also different. 

For example, ReliefF selected ‘TSH Measured’ and ‘On Thyroxine’ as relevant features; however, 

these features were not considered to be relevant by the Pearson Correlation or Gain Ratio Filtering 

methods. Additionally, ‘Age’ was considered relevant by the Pearson Correlation method, yet this 

feature was not chosen by the Gain Ration or ReliefF methods. 

Table 1.2: Top Five Features Selected by the IG, CFS, and PC Methods from the Sick Dataset 

 ReliefF Gain Ratio  Pearson Correlation  

1. Referral Source T3   T3 

2. T3 Measured Hypopituitary Referral Source 

3. TSH Measured Referral Source T4U 

4. On Thyroxine T4U Age 
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5. T4U Measured T3 Measured T3 Measured 

The problem of score inconsistency may confuse the end-user. Recent approaches have dealt with 

results of instability for Filtering methods [72,168,139], but these also produce variations 

especially in how to discriminate between useful and useless features in the final subset which is 

not defined. The relevance can only be quantitively measured in the presence of a classification 

algorithm, as in the Wrapping approach [27,49,100,151,191], so the optimal features sets can be 

determined according to specific evaluation metrics (recall, accuracy, precision, harmonic mean, 

etc.). However, in the Filtering approach, the presented subset of features cannot guarantee the 

best classification performance as in the Wrapping approach. Therefore, measuring feature 

relevance becomes a difficult task that requires extensive trial and error by the user; the domain 

expert can also be relied on to manually assess the Filtering method’s outcome. The latter was 

discussed in the previous sub-section.  

We deal with the above issue by defining feature relevance based on non-overlapping simple rules 

induced from the training datasets. These rules are non-overlapping since they have been learnt 

from different parts of the training dataset, so they do not share training instances. The goodness 

of these rules is measured by the actual data coverage. Each feature of the training dataset is 

assigned a score using the items (feature values) appearing in the rules, and these rules have already 

been evaluated against the training dataset to reveal their goodness (confidence the relevance of 

the features has been measured). This approach does not guarantee an optimal subset of features 

as in the Wrapping approach, though it provides at least a measure of goodness to overcome the 

problem of trial and error.  
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1.5 Dissertation Structure   

The dissertation comprises five chapters. Chapter Two reviews common approaches related to 

Filtering methods within the learning lifecycle and critically analyzes these approaches. Chapter 

Three proposes the new Filtering method and the cut-off procedure. Chapter Four is devoted to the 

implementation, testing, empirical results, and analysis of the proposed methods. In Chapter Four, 

we test CARF and the cut-off procedure on a large number of datasets and compare the results 

with the state-of the-art Filtering methods using machine learning. Finally, we conclude in Chapter 

Five. 
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Chapter Two  

2. Literature Review  

2.1 Introduction   

Feature selection helps domain experts and users understand which features are available in the 

dataset that could improve the performance of the classification models [78]. Feature selection 

methods are normally divided into three main categories: Filtering, Wrapping, and Embedded [26]. 

Filtering uses mathematical methods to generate weights for the available features in the dataset. 

These weights are calculated against the training dataset using a static mathematical equation such 

as mutual information [41], Bayes Theorem [102], Relief [174] or probabilities [38]. These 

methods are highly efficient since they choose the features set without having to utilize any 

learning algorithm. Conversely, Wrapping methods employ a learning algorithm (often a 

classification method) to produce classification models using all possible feature-class 

combinations [74]. They ultimately select the features set that yielded the highest performance in 

terms of classification accuracy when processed by the learning algorithm. Despite the fact that 

Wrapping methods derive the best performance, they may not be feasible for data with high 

dimensionality; besides, they rely on the type of learning algorithm used, so when changing the 

learning algorithm the outcome will change (a different features set will be produced) [21]. Finally, 

Embedded methods combine both Wrapping and Filtering methods in a way that the learning 

algorithm has its own feature selection during the model-building phase [105,106]. An example of 

an embedded method is the Least Absolute Shrinkage and Selection Operator (LASSO) method 

for linear regression [195].  
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This chapter highlights feature selection methods and common approaches within Supervised 

Learning. Unsupervised feature selection is beyond the scope of this research - the focus is 

primarily Filtering methods. The chapter will critically analyze Filtering methods and pinpoint 

issues that researchers need to address to further enhance the process of selecting features and its 

impact on the outcome of learning approaches. We build upon recent research works related to 

Filtering methods [27,37,133,140,147,155,157] and reveal new issues such as Features’ Relevance 

which is based on the feature’s score, complex data, score variations, how to discriminate between 

useful and useless features, and live data processing.  

The chapter comprises six sub-sections. Section 2.2 introduces learning types in machine learning 

and then briefly discusses the main steps of any Supervised Learning algorithm. Section 2.3 is 

devoted to evaluation measures in Supervised Learning, and Section 2.4 surveys recent literature 

related to Filtering methods and discusses common Wrapping and Embedded approaches. In 

Section 2.5, we highlight the challenges for Filtering methods, and finally, the chapter summary 

is given in Section 2.6. 

2.2 Learning Types in Machine Learning   

Machine learning is a part of Artificial Intelligence that, without any human assistance, improves 

the learning process of computers based on past experiences [136]. Machine learning algorithms 

such as Artificial Neural Network, Support Vector Machines (SVM), Decision Trees, Probabilistic 

Instance-based Learning [30,38,138,143], and others attempt to estimate potentially significant 

relationships between input and output variables by analyzing large datasets [114]. Two common 

learning types in machine learning that are pursued by machine learning algorithms are predictive 

and descriptive analysis. The former involves constructing a model to predict a specific variable 

value, called the class label, using historical labelled instances and a number of independent 
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variables (features) [88]. The latter involves producing certain knowledge to describe the dataset 

or grouping data instances to a set of specific groups. The learning process starts with the input of 

data instances with specific features and then exploring that data to discover useful patterns for 

decision-making using different learning schemes [5]. When Supervised and Unsupervised are 

integrated for specific datasets, we call the learning process Semi-Supervised Learning [108]. An 

example of a Semi-Supervised Learning is to use clustering algorithms for tasks that involve 

classification or prediction. Lastly, Reinforcement Learning involves learning from the 

surrounding environment by trial and error (learning curves from decisions and actions taken 

throughout the learning process) [66]. Figure 2.1 depicts the common types of learning which we 

intend to explain in subsequent sections.  

 

 

Figure 3: Machine Learning Types [110] 

 

2.2.1 Supervised Learning Tasks  
 
Supervised Learning is the most common type of learning and an important element of data science [85]. In Supervised 

Learning, the input will be a classification task represented by a training dataset with labelled variable, the purpose of 

which is to guess the value of the class label in an unseen test dataset as accurately as possible. The way Supervised 

Learning works is by modelling a classification model using the training dataset and the machine learning algorithm 
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(often a classification method); forecasting the class label in the test dataset is then performed by the classification 

model. The evaluation of the classification model is usually done using the test dataset, and when this is not possible, 

then testing methods such as ten-fold cross validation are used [73]. If the results of the evaluation are acceptable 

(good predictive accuracy is obtained), then we say that the model can be accepted and generalized; otherwise we 

reject the model. There are various evaluation metrics for Supervised Learning including classification accuracy, error 

rate, precision, recall, harmonic mean, and others [68]. Overall, Supervised Learning algorithms are modelled to learn 

from past experience, i.e. learn by data examples, using certain learning schemes such as statistical, probabilistic, 

information theory, and others. Thus, the analysis often involves constructing a mapping function that can be used to 

map new data examples, i.e. test instances [85].  

There are several techniques used in Supervised Learning to construct classification models such as k-Nearest 

Neighbor (kNN) [59], Incremental Reduced Error Pruning (IREP) [29], Naïve Bayes [38], Back Propagation [144], 

C4.5 [137], Multi-Class Classification-based Association (MCAR) [165], AdaBoost [44], Random Forest [58], 

RIPPER (Furia)[28], Linear SVM [30], and others. 

There are two primary tasks in Supervised Learning: classification and regression, as shown in Figure 4. A 

classification task mainly comprises two parts: model construction i.e. training on the input dataset to learn a mapping 

function and using the model for forecasting the class of new instances [126]. During the model’s construction, the 

classification algorithm utilizes the relevant features that best describe the model [73]. There are several applications 

where Supervised Learning can be used including fraud detection [154], phishing detection [4], credit card scoring 

[154], medical diagnosis such as cancer detection [51], behavioral applications such as autism detection [164,170], 

dementia prediction [9], image recognition [183], consumer retention [70], weather forecasting [117], sport games 

prediction [23], and  others.  

One special case of classification tasks is regression, which occurs when the class label in the training dataset is 

continuous (numeric or fraction) [118]. Regression basically employs a statistical method for analyzing a labelled 

dataset to discover the relationship between the class label and independent variables. For example, if one would like 

to forecast volume of sales, income, temperature, stock price, etc. In its simplest form, regression analyzes the 

correlations between two variables in a dataset to check whether one can explain the other by linearly modelling their 

relationship [33]. Regression relies on a linear, quadratic, polynomial, nonlinear hypothesis [99]. There are many 
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different types of regression analysis such as linear regression [171], logistic regression [86], and polynomial 

regression [33]. 

 

Figure 4: Supervised Learning [69] 

 

2.2.2 Unsupervised Learning 
 

Unsupervised Learning does not require class labels in the input dataset, and algorithms try to find 

patterns and similarities of the available variables to identify previously unknown knowledge or 

clusters [24]. This learning refers to the possibility of understanding and organizing data to decide 

the potential response. The lack of context in Unsupervised Learning for the learning algorithm 

can often be useful, as it allows the algorithm to revisit patterns that have previously not been 

considered [148]. Unsupervised Learning algorithms are powerful in detecting patterns in 

multidimensional data that cannot be detected by humans. Unsupervised Learning appears to be 

more complex, as the analysis does not have a specific goal as do classification tasks in Supervised 

Learning [156]. The most common tasks in Unsupervised Learning involve Association Rule and 

clustering [150] (See Figure 5).  

Clustering refers to a wide range of techniques used to identify subgroups or clusters within a 

dataset using a similarity measure [89]. This allows observations to be divided into separate 

groups, such that each group comprises similar observations. This technique can therefore detect 
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outliers, i.e. the points falling outside of the clusters [178]. Since the clustering task is subjective, 

there are several methods that can be used to accomplish this goal. Each approach applies a 

different set of guidelines to describe the 'similarity' between data points [156]. Clustering can be 

used in multiple real applications such as customer segmentation [48], targeted marketing [16], 

and recommender systems [132], among others. There are many clustering techniques, but the 

most widely used algorithms in cluster analysis are k-means, hierarchical clustering, and 

expectation maximization (EM) [156]. 

Another common Unsupervised Learning task is Association Rule mining which involves 

exploring sales transactions to produce hidden correlations among items in the format of ‘If-Then’ 

rules. The Association Rule mining algorithm usually relies on two main thresholds: minimum 

support and minimum confidence. The minimum support is used to check which items are eligible 

to be part of the rules by comparing their frequencies in the transactional database. An item with 

a frequency above the minimum support threshold is called a large / frequent item while any items 

below the minimum support threshold will be ignored. Once the complete large items are found, 

the Association Rule mining algorithm then evaluates the confidence value to convert those items 

into rules. Association rules are crucial for making planning and marketing decisions such as items 

that go on sale, item shelving, promotion strategies, and others. The typical Association Rule 

applications include basket data analysis [76], cross-marketing [17], catalog design [156], and 

loss-leader analysis [83]. Generally, Apriori [7], Frequent Pattern Growth [56], dEclat [187], 

CHARM [186], LCM [173], Map Reduce ARM [25], and Apriori-Feed Forward [7] are common 

Association Rule mining algorithms.   
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Figure 5: Unsupervised Learning  [69] 

 

 

2.2.3 Supervised Learning Lifecycle 

 

Figure 6: Learning Lifecycle   

 

The Supervised Learning lifecycle shown in Figure 6 consists of preprocessing the input data, 

applying classification algorithms on the processed data, building classification models, and 

evaluating the models against test data. The underlying goal of the process is to extract knowledge 

from raw data by using intelligent algorithms, along with the required pre-processing and 

transformation of data [82]. The overall process involves repeatedly applying the following steps: 
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2.2.3.1 Data Collection and Understanding 

Data collection is the process by which data is gathered from numerous external and internal 

sources for analysis. Often, there will be a specific scope, task, and purpose for data analysis based 

on the need of the business or the user; these are used to map the data into specific AI and machine 

learning techniques [8]. For example, if the purpose is to predict a value of a variable and that 

value is discrete, then classification algorithms seem more suitable. However, if the task is to reveal 

certain correlations in the form of easy-to-interpret knowledge, then Association Rule mining can 

be an appropriate approach. Collected data must be understood and treated in a manner that makes 

sense for the specific purpose and tasks [8].  

Prior to performing any data manipulation and pre-processing operations on the collected data, the 

user or the data engineer must understand the data. Data understanding in the context of data 

statistics and features is essential to ensure that methods selected for learning are appropriate and 

compatible. More importantly, it gives the user an in-depth understanding of the data 

characteristics, feature types, machine learning requirements in terms of types of features needed, 

and any requirement for data transformation such as normalization, discretization, and others if 

any. By using the scope of the work and purpose, the user will be able to identify to a certain 

degree any possible features to be collected from the external and internal sources. Often when 

users are faced with big data with a large number of features, the process of determining which 

features to collect is difficult to manage [122]. Data collection helps users and data engineers to 

capture the needed features and instances for analysis using the scope and purpose of the analysis 

[82]. 

 

 



www.manaraa.com

 

25 
 

2.2.3.2 Data Pre-processing 

Data pre-processing is a phase that involves data preparation and transformation into a form 

suitable for modelling the task under investigation using machine learning [192]. Data pre-

processing is a key step since the quality of the data when modelled directly impacts the outcome 

(knowledge) goodness and consequently the reliability of the outcome and its use [8]. Pre-

processing aims to reduce data size, find discretized features, normalize features, remove noise 

and outliers, while handling missing data, dealing with data inconsistences, smoothing data, data 

balancing, and other tasks [122]. Common data pre-processing operations are discussed below. 

A. Data Cleansing  

Data cleaning is the process of identifying and deleting (or fixing) incorrect data from a dataset, 

i.e. identifying inconsistencies, redundancies, missing or obsolete parts of the dataset, and then 

repairing, remodeling, or eliminating data to gain reliable information [39]. Incomplete data is an 

inevitable problem when dealing with any of the real-world data sources. In general, certain crucial 

considerations need to be addressed when cleaning unknown feature values, i.e. causes for missing 

data (input errors, system errors, overlooked or lost data, some features are not applicable for a 

given instance, etc.) [82]. Therefore, missing data, noisy data, and data inconsistencies need to be 

treated carefully before learning steps are activated. There are various techniques to cleanse the 

data and to deal with missing values such as deleting instances with missing values, imputing using 

average or median, using most common value in the feature, zero/ constant, etc. [192]. Noise data 

can be corrected using the binning method, clustering, sorting, and regression, etc. [8]. 

B. Data integration 

Data Integration is the process of combining data from multiple sources into a unified view to 

support the data analyst in making smarter business decisions [192]. Schema integration and 
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redundancy are two major issues of data integration [156]. The key benefits of data integration are 

enhancing system collaboration, saving time, increasing performance, minimizing errors, and 

delivering more valuable knowledge [156]. There are several data integration techniques 

including, Manual Integration or Common User Interface, Application-Based Integration, 

Middleware Data Integration, Uniform Data Access or Virtual Integration, Common Data Storage 

or Physical Data Integration [128].  

C. Data Transformation  

Data transformation is a process of converting data format, structure, or values to make the learning 

process more efficient. Data transformation may involve a variety of tasks such as change of data 

type, data cleaning by eliminating null or obsolete data, data enrichment, or aggregation, 

depending on project goals [156]. Smoothing [120], Aggregation [145], Generalization [49], and 

Normalization [153] are a few methods to perform transformation. Smoothing allows binning, 

clustering, and regression techniques to eliminate the noise data [120]. Aggregation is the method 

by which statistical measures such as mean, median, and variance are applied to summarize data 

[145]. Generalization involves replacing lower level data (primitive) by higher level using 

hierarchical principles [49]. Normalization is the process of adjusting data into specific ranges 

such as 0 to 1 or -1 to 1 [153]. 

D. Discretization  

Discretization is the process through which continuous variables, models, or features are converted 

into a discrete form [98]. This is accomplished by generating a series of adjacent intervals (or bins) 

which extend beyond the range of variable/ model/ function. Overall, discretization algorithms can 

be divided into two depending on if they function as supervised (uses class label) or unsupervised 

discretization (top down or bottom up discretization) [8]. 
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Binning [67], histogram [188], entropy-based [34], and clustering [102] are a few discretization 

techniques that can be easily performed. Binning, histogram, and clustering are unsupervised 

methods whereas the popular entropy-based is a supervised method. Equal-width or equal-

frequency binning can be used to discretize attributes by replacing values by mean or median. 

Binning and entropy-based partitioning measure the number of partitions, independent of the other 

features [82]. 

E. Dimensionality Reduction 

In cases when there is a massive number of features in applications related to bioinformatics, text 

categorization, and medical diagnosis, reducing the number of input features in the dataset 

becomes vital [21]. Dimensionality reduction methods, also known as feature selection methods, 

reduce the search space of the learning problem (number of input features) while trying to maintain 

model performance [6]. This step involves finding relevant features from the original set of 

features in the dataset to represent the whole dataset, a) to make the training time efficient, b) to 

simplify the output, c) to simplify the input,  and d) to eliminate useless features [79]. 

Examples of common approaches to feature extraction are Maximum Relevancy Minimum 

Redundancy (mRMR) [35], ReliefF [81], Conditional Mutual Information Maximization (CMIM) 

[41], Pearson Correlation Coefficient (PCC) [130], Principal Component Analysis (PCA) [129], 

Non-Linear Principal Component Analysis  (NLPCA) [135], Independent Component Analysis 

(IPA) [61], and Correlation-based feature selection (CFS) [52]. Many researchers have been 

studying how these approaches help to improve the predictive accuracy of the classification 

algorithm. Hence, in Chapter Three, we discuss the feature selection problem and its related 

literature. 
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2.2.3.3 Training using a Machine Learning Algorithm  

After data is pre-processed, a machine learning algorithm,  such as classification or clustering, will 

be applied on the dataset depending on the learning purpose. Careful attention is then required to 

decide which algorithm and parameters are appropriate and matching the overall data processing 

process. The success of the selected algorithm relies on different factors such as the data 

characteristics, setting values of the algorithm’s parameters, input features, and available 

computing resources among others [103].   

2.2.3.4 Testing and Evaluation 

The outcome of the training phase consists of the patterns or models learned. In the case of 

classification tasks such as credit card scoring or medical diagnosis, the model learnt is evaluated 

on test data to reveal its performance in terms of predictive power. Often models are measured in 

terms of common evaluation metrics such as accuracy, sensitivity, specificity, F-measure, training 

time, etc. If the model does not show the expected result, we can use a different learning algorithm 

or possibly tune the parameters of the original algorithm. The outcome of evaluating multiple 

algorithms against test data lays the groundwork for discovering which algorithms could be worth 

tuning on the problem [68]. There are various performance measures to validate the model, and 

these measurements provide a reliable score; these evaluation measures are discussed below. 

2.3 Evaluation Step and Measures 

Evaluation measures play a significant role in machine learning as they are not only used to 

compare various learning algorithms but also as goals to optimize in developing learning models 

on unseen data [60]. Therefore, frequent evaluation and focusing on the outcome of what was more 

and less effective will help identify areas for improvement and consequently help meet the goals. 

The information gained helps in the understanding of the model’s impact for organizations to make 
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informed decisions. Thus, identifying performance metrics to evaluate the models derived by 

machine learning is vital. Metrics such as accuracy, precision, specificity, sensitivity, and others 

are described below [68]: 

Accuracy: Measures the proportion of correctly classified observations to the total observations. 

In a classification task, this is the ability to predict the class label. Accuracy is recognized as the 

simplest measure among all the others.  

 Accuracy = (TP + TN) / (TP+TN+FP+FN)    (1)  

Precision: The ratio of correctly predicted positive observations to the total predicted positive 

observations. 

 Precision = TP/(TP+FP)      (2) 

Specificity: The ratio of correctly predicted negative observations to all of the observations in the 

actual class – no. It is also the true negative rate.  

 Specificity: TN / (TN+FP)      (3) 

Sensitivity/ Recall: The ratio of correctly predicted positive observations to all of the observations 

in actual class - yes. This is the true positive rate.  

 Recall = TP/TP+FN       (4) 

AUROC curve (Area Under the Receiver Operating Characteristics) depicted in Figure 7 shows 

the relationship between false positives and true positives. A true positive is the result when the 

classification algorithm predicts the positive class correctly. A false positive is the result when the 

algorithm predicts the positive class incorrectly. The field tests bias, the capacity of the algorithm 

to accurately classify the test results. 
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Figure 7: AUROC Curve  [158] 

 

Time: The amount of time in milliseconds (ms) taken to build the classifier model. 

2.4 Common Feature Selection Approaches   

Lei [87] proposed a new approach for selecting text features based on the IG and Genetic 

Algorithm (GA). The main feature selection techniques such as IG, generic coding, fitness 

function, selection, crossover, and mutation have been tested. The fitness function has been 

enhanced for the information filtering systems to properly understand the qualities of weight, text, 

and vector similarity, etc. This approach selects the feature with the frequency of items based on 

the information gained. It has shown that IG improved values, however it minimized the text vector 

dimensions and maximized text classification accuracy, i.e. result in effective feature selection 

method. 

Khalid, Khalil, and Nasreen [79] investigated feature selection steps to minimize the effect of 

irrelevant, redundant, and noisy data on the classification task of biological medical data. The 

authors studied search strategy, subset evaluation, and stopping criteria by comparing results 

obtained using feature selection techniques such as Correlation Coefficient [130], mRMR [35], 

PCA [129], Prediction Analysis of Microarray (PAM) [32]. The comparative analysis found that 
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feature selection approaches that manage both redundant and irrelevant features at once, such as 

mRMR, are far more reliable and effective for the learning process relative to approaches that treat 

redundancy features and/or irrelevant features discretely. 

Jenke, Peer, and Buss [63] reviewed feature selection techniques on emotion recognition from 

EEG signals based on 33 studies. Various feature extraction methods have been studied to choose 

appropriate features as well as electrode locations relying on neuroscientific observations. The 

study was performed on multivariate and univariate feature selection techniques. The research 

indicated that multivariate selection techniques such as mRMR responded slightly better than 

univariate techniques, often requiring fewer than 100 features on average. A total of 16 participants 

(seven females, nine males) aged between 21 and 32 took part in this experiment. The recorded 

data set for each subject contains eight trials of 30-second EEG testing for five different emotions 

(happy, curious, angry, sad, quiet). The authors compared the most impactful features and the 

electrodes that are often chosen for them. Advanced extraction methods for features such as Higher 

Order Crossings (HOC) [125], Higher Order Spectra (HOS) [109], and Hilbert-Huang Spectrum 

(HHS) [97] outperformed widely-used spectral power bands.  

Zena and Gillies [189] reviewed feature selection methods to reduce the dimensionality of high-

dimensional microarray cancer data. Microarrays, a biological medium to collect gene expressions, 

are a common source of data. Analyzing microarrays can be challenging due to two major factors, 

i.e. the scale of the data and complex relationships between the various genes [6]. Therefore, 

removal of unnecessary features will improve the output. The authors critically analyzed a few 

common methods for choosing significant features, i.e. Filtering, Wrapping, and Embedding, and 

subsequently more focus has been given to filtering where univariate and multivariate methods 
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were discussed and evaluated. In the next section we review common feature selection methods 

based on the taxonomy shown in Figure 8. 

 

 

Figure 8: Taxonomy of Feature Selection Methods  

 

2.4.1 Filtering Methods  
 

Filtering (Figure 9), the most widely used feature selection technique, uses various relevance 

metrics to identify a smaller subset of features and filter out irrelevant features [42]. Once a 

relevance metric is chosen, a score per available feature is calculated using a mathematical model 

and a ranking procedure is invoked to rank features. Normally, relevancy metrics rely primarily 

on the features’ frequencies and the correlations between the feature and the class labels available 

in the training dataset [45]. The process of determining relevant features does not require the 

involvement of a supervised learning model [60].   
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There are two common categories of Filtering methods: Univariate and Multivariate. Univariate 

techniques involve ranking each feature individually based only on its relevance to class label [5]. 

Thus, most of the Univariate Filtering methods, e.g. Mutual information, Variance, Fisher 

[41,47,105], do not consider feature redundancies, i.e. feature-to-feature correlation to determine 

an optimum set of features [33, 35, 74, 178]. In contrast, subset-based evaluation techniques utilize 

Multivariate schemes to determine the ranking considering the entire feature subset as one. Thus, 

although Univariate techniques ignore feature spaces/ dependencies in ranking the features, 

Multivariate techniques take feature spaces into consideration to identify and eliminate redundant 

features [111,121]. However, Univariate techniques are more efficient in terms of computational 

complexities. Multivariate techniques outperform Univariate techniques because they consider the 

mutual relationship between features, hence minimizing the presence of feature-to-feature 

relationships in the results set to offer a less redundant outcome [107]. In the next subsections we 

review common Filtering methods. 

 

 

 

 

 

Figure 9: Filtering Method Process   
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2.4.1.1 Univariate Filtering Methods  

 

Univariate Filtering methods consider the relationship between each single feature in the training 

dataset with the dependent variable [5]. These methods usually employ statistical tests to compute 

weights for each feature from the training dataset based on the feature’s frequency, the feature’s 

frequency with the class labels, and class label’s frequency, among others. Univariate Filtering 

methods do not seek relationships between all features in the training dataset [79]. In the next 

subsections, we review common Univariate Filtering methods.  

A. Correlation-Based Methods  

Correlation is a key metric in statistics which measures the relationship between two variables 

[45]. The correlation coefficient is ±1 when two variables are dependent. If the features are not 

correlated, then the correlation coefficient is 0. Two types are typically utilized to measure the 

correlation of two random features; the first one uses information theory, and the second is more 

common and based on linear correlation [130]. As per the standard literature, for a pair of variables 

(X, Y), the linear Pearson correlation coefficient ‘r’ is given by: 

r = 
∑(𝑋𝑖−𝑋̅𝑖)(𝑌𝑖−𝑌̅𝑖)

√(𝑋𝑖−𝑋̅𝑖)2√(𝑌𝑖−𝑌̅𝑖)2
       (2.1) 

where X and Y are the two random quantitative features. The magnitude of r pinpoints to the 

correlation strength. When r is negative, this indicates a negative association and when r is positive 

then there is a positive association. Other correlation-based Filtering methods that are Multivariate 

are discussed in Section 3.2. 

Fisher-Score (F-Score) 

F-score is a Univariate Filtering method mostly used in binary classification problems to determine 

the optimum feature subsets using the distances between the features and the class labels. F-score 
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is derived by dividing the sample mean of each class per feature by their variances. Therefore, F-

Score presents a list of features that are ranked based on their importance within the class label. 

Features with high F-score are listed as the top-ranked features and have the ability to predict the 

class variable [69]. However, since F-Score weighs each feature individually, it completely ignores 

the features that indicate a lower score when considered individually but a higher score with the 

class label when combined with another feature [47,93].  

 

𝐹𝑖𝑅𝑖 =  
|𝑥̅𝑖

(0)
−𝑥̅𝑖

(1)
|

√𝑣𝑎𝑟(𝑥𝑖)(0)+𝑣𝑎𝑟(𝑥𝑖)(1)
                                                      (2.2) 

 

 B. Mutual Information  

Information Gain (IG) 

IG uses the amount of information each feature holds to predict the class label as the measure of 

goodness. The purer the outcome of a data split using a feature and the class labels, the higher the 

gain associated with that feature. IG estimates the expected decrease in Entropy when splitting the 

data instances using a feature [137]. Entropy estimates the uncertainty between features [41]. IG 

calculates the amount of information between available features and class labels, and then 

produces scores for the available features. Shown below are the mathematical equations for IG 

[138]. 

IG (T, F) = Entropy (T) -  ((|Tf| / | T |) * Entropy (Tf))  (2.3) 

where 

Entropy (T) =∑ −𝑃𝑐𝑙 𝑙𝑜𝑔2 𝑃𝑐𝑙     (2.4) 
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where vP  = probability that T belongs to class cl.  

Tf = subset of T for which F has value f 

|Tf| = number of examples in Tf, and |T| = Size of T.  

Maximal Information Coefficient (MIC) 

MIC estimates the linear or non-linear correlations between variables and seeks other hidden 

relationships such as superposition of functions. Both maximum information and grid partition 

methods can be used in calculating MIC [157]. The MIC score basically ranges from 0-1 where 1 

indicates high dependency between two considered variables and 0 indicates that the considered 

variables are purely independent. Although MIC performs well on both numerical and categorical 

data, it does not perform as well as other dynamic feature selection algorithms such as T-Test 

[45,64]. 

𝑀𝐼𝐶(𝐷) =   max
𝑥𝑦<𝐵(𝑛)

{𝑀(𝐷)𝑥,𝑦}                                                                     (2.5)                     

Where the X/Y grid size < B(n), D is given a fixed set and X and Y represents various column and 

row values of the maximum grid. According to Sunab, Liab, Daiab, Songa, and Lang (2018) [157], 

MCI performs well  when setting B(n) = n0.6. 

Gain Ratio (GR) 

One of the issues associated with the IG Filtering method is that it is biased toward features that 

are linked with more values [41,78]. To deal with this bias, GR was proposed. GR is a normalized 

form of IG which is computed by dividing the IG with the Entropy of the feature in regard to the 

class label (See Equation 2.6). Since IG is employed to build tree-based classifiers, GR measures 

the IG ratio of each node in the decision tree where non-terminal nodes signify the tests on one or 
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more feature, and terminal nodes signify outcomes of the decision [74]. Basically, this Filtering 

method considers both the size and number of the branches in the decision tree and determines the 

optimum feature subsets [74]. GR normalizes and balances IG by dividing it by Entropy of X 

(H(X) as shown in Equation (2.7) when class ‘Y’ is to be predicted. The value of GR typically 

ranges from 0-1, where 1 indicates ‘X’ and ‘Y’ which are dependent on each other. Hence ‘X’ has 

the ability to predict ‘Y’ and 0 indicates that ‘X’ and ‘Y’ are completely independent variables 

thus, ‘X’ does not have the ability to predict ‘Y’. One drawback of GR is that it does not take 

feature dependencies into consideration when determining the weights of the features [161].  

GR = 
𝐼𝐺

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐼𝑛𝑓𝑜(𝑆,𝐴)
       (2.6) 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐼𝑛𝑓𝑜(𝑆, 𝐴)=− ∑
𝑆𝑖

𝑆
𝑙𝑜𝑔2 

𝑆𝑖

𝑆
     (2.7) 

Where IG is the information gain and IntrinsicInfo is the Entropy of attribute ‘A’ over a set of 

examples ‘S’. 

Symmetrical Uncertainty (SU) 

SU is another Filtering method that uses the merit of each feature to determine the fitness of 

features in predicting the class label [116]. It symmetrically compensates for the bias of MI that 

occurs due to a large number of different values and presents a normalized score within the range 

of 0-1 [133]. A score of 1 indicates higher merit with regards to the class label, whereas 0 indicates 

that the considered features do not have any merit. As shown in Equation (2.8),  SU between 

features X and Y can be obtained by dividing twice MI, after observing Y from the Entropy of the 

features [155]. 

SU(A, B) = 
2×𝐼𝐺(𝐴|𝐵)

𝐸(𝐴)+𝐸(𝐵)
       (2.8) 
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Where 𝐼𝐺(𝐴|𝐵) the gain of information of A after knowing Y; E(A) and E(B) are the Entropy 

values of A and B respectively.  

ReliefF 

ReliefF computes the scores (proxy statistics estimates) of each available feature with the class 

label in the training dataset and then ranks features based on computed scores [129]. The original 

ReliefF Filtering method was unable to deal with missing values and only considered datasets with 

binary classification (two class labels) [174].  The mathematical notations for the ReliefF Filtering 

method are given below and the complete pseudocode of the original algorithm (Relief) is shown 

in Figure 10.  

The Relief algorithm iterates over m random instances (set up by the end-user) in the target training 

dataset (Ri) without replacement. During each iteration, Ri and the vector W of the feature score 

are amended according to W[A] as shown in Figure 10. W[A] denotes the differences between the 

neighboring data instances and the target instances in feature value. For each target instance, the 

algorithm determines two neighbors, i.e. hit (H)- the one of similar class label, and miss (M)- the 

one with different class label. Lastly, the algorithm amends A’s weight in W when the feature 

values of Ri do not match those of the nearest H or nearest M. Therefore, any feature with a value 

different from that of Ri and M triggers the W[A] to increase as this is an indication of informative 

value. 

W[A] = W[A] -  
(𝑑𝑖𝑓𝑓

A,𝑅𝑖,𝐻

m
)

 (𝑑𝑖𝑓𝑓
A,𝑅𝑖,𝑀

m
)
        (2.9) 

Where, 

W[A]= feature weights 
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A = number of features 

m = number of random training instances out of ‘n’ number of training instances used to update 

W 

𝑅𝑖 = randomly selected target instance 

H/M = nearest hit and nearest miss 

 

Figure 10: Original ReliefF Algorithm Pseudocode [152] 

 

C. Probabilistic Methods 

Chi Square Testing (CST) 

CST uses the difference between the observed frequencies and expected frequencies of each 

categorical variable and the class labels to determine the association among variables [66]. To  

use this method for feature selection, the variables considered should be categorical, sampled 

independently, and the value of expected frequency should be greater than 5 [98].  

A higher CST value indicates close dependency between the variable and the class label. 

Therefore, features with higher CST values are selected for model-fitting purposes. Below is the 

formula for the CST [98]. 
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𝑋2 =
(𝑂−𝐸)2

𝐸
         (2.10) 

Where  

O denotes the Observed Frequency, and E denotes the Expected frequency, for the considered 

features’ values. CST has been applied widely including text mining [12,113]. 

Least Loss (L2) 

L2 is a new Filtering method that uses the distance between observed and expected frequencies of 

the variables with the class labels to rank the features [168]. L2 values are computed based on the 

expected and observed frequencies of the features; each feature is ranked in ascending order based 

on the computed L2 values. This method identifies and removes redundant features without having 

to alter the model construction phase [168]. The authors evaluated the L2 Filtering method on a 

large number of datasets downloaded from the UCI data repository using the Naïve Bayes 

algorithm. The results produced were compared with the IG and CST methods using the same 

classification algorithm and they pinpointed that L2 can reduce data dimensionality and maintain 

stable models in terms of accuracy. The mathematical notation of the L2 method is given below.      

𝐿2(𝑌, 𝑋) =  ∑ [𝑃(𝑌𝑖,𝑋𝑗) − 𝑃(𝑌𝑖)𝑃(𝑋𝑗)]2
𝑖,𝑗      (2.11) 

Where, 

X = Independent feature class 

Y = Class label 

𝑃(𝑌𝑖) = Theoretical marginal distributions of 𝑌 

𝑃(𝑋𝑗) = Theoretical marginal distributions of X 
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𝑃(𝑌𝑖,𝑋𝑗) = Theoretical joint probability distributions of X and Y 

Variable Analysis (VA) 

Kamalov and Thabtah (2017) [72] developed a Filtering method to reduce the results variations of 

the IG and CST methods. The authors presented the VA method which uses a vector of scores of 

both IG and CST results, normalizes the scores, and then computes the vector magnitude 

(V_score). The V_score along with Correlation Feature Set (CFS) method’s results [72,52] are 

then combined to produce a new metric for filtering out relevant features. The V_score for a feature 

X is defined in Equation (2.12) and can be represented as the square root of the sum of the square 

of its IG and CST results (its coordinates) as in Equation (2.13).  

Va = ( 𝐼𝐺𝑥
𝐶𝑆𝑇𝑥

)                         (2.12) 

|𝑉𝑎| = √(𝐼𝐺)2 + (𝑇𝑆𝑇)2    (2.13) 

The VA Filtering method utlizes CFS results to compute the V_score in its subset and then discards 

features with V_scores 50% less than the top V_score in the CFS feature set. Experimental results 

using 15 datasets from the UCI data repository reveal that the Va Filtering method reduces the 

number of chosen features for the majority of the datasets considered when contrasted with IG and 

CST results. 

Distinguishing Feature Selector (DFS) 

DFS ranks features based on their probability of occurrence in number of classes. If a feature 

occurs rarely in a single class and does not occur in the other classes, that type of feature is scored 

low and considered irrelevant. Features that occur frequently in a single class and are not present 

in the other classes are ranked high since they are highly distinguishing. Hence, features that are 
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ranked high are considered to have merits and are used in the predictive models. The DFS formula 

is given below: 

DFS(t) = ∑
𝑃(𝐶𝑗|𝑡|)

𝑃(|𝑡̅|𝐶𝑗)+𝑃(|t|𝐶̅𝑗)+1

𝑀
𝑗=1        (14) 

Where, 

M = number of classes 

𝑃(𝐶𝑗) = Probability of jth class 

𝑃(|𝑡̅|𝐶𝑗) = Probability of absence of term ‘t’ when class ‘Cj’ is given 

𝑃(|t|𝐶𝑗̅) = Feature likelihood when classes other than ‘C’ are given 

2.4.1.2 Multivariate Filtering Methods  

 

Most of the available Filtering methods consider the univariate relationship between two variables 

and do not consider correlation among sets of features during feature selection. Evaluating 

combinations of feature-to-feature relationships is vital in reducing the redundancy in the optimal 

features subset to discard similar features from playing any role in the learning process 

[19,26,161]. Therefore, the removal of the redundant features will minimize the model’s 

overfitting and improve training time efficiency for the classification algorithm since fewer 

features that are dissimilar will be processed. In the next sub-sections, we review common 

multivariate Filtering methods that deal with the issue of reducing feature-to-feature correlations 

during the feature selection process.   

A. Correlation-Based Methods  

A heuristic evaluation function based on correlations is used in the Correlation Feature Set (CFS) 

Filtering method to rank features. CFS selects features that are highly correlated with the class 
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label, but independent from each other [52]. It ignores the irrelevant features that demonstrate a 

lower correlation value [123]. The CSF criterion is computed by the following mathematical 

equations:  

Merits = 
𝑘𝑤𝑐𝑓̅̅ ̅̅ ̅̅

√𝑘+𝑘(𝑘−1)𝑤𝑓𝑓̅̅ ̅̅ ̅̅
     (2.15) 

Where Merit is the hypothesis of a feature set S containing k subset of features in Equation 

(2.15). 𝜔𝑐𝑓̅̅ ̅̅ ̅  is the feature-class correlation average, and 𝜔𝑓𝑓̅̅ ̅̅ ̅̅   the feature-feature inter-

correlation average.  

The correlation between two subsets i and j, wij is computed per Equation (2.16) 

Merits = 
∑(𝑖−𝑖̅) (𝑗−𝑗̅)

√[∑(𝑖−𝑖̅)2] [∑(𝑗−𝑗̅)2]
   (2.16) 

Where i is the instance set that belong to the feature and j is the instances set that belong to the 

class label, and  𝑖 ̅and 𝑗 ̅ are the mean values of the class and features, respectively. 

One of CFS’s limitations is that it usually derives an outcome that contains features with 

relatively low IG and V-scores [19].  

Fast Correlation-Based Filter (FCBF) 

The study by Yu and Liu (2004) [184] is one such attempt to address the need to incorporate a 

redundant feature analysis process; considering feature relevancy only is insufficient to determine 

the best feature subsets. The authors introduced a novel mechanism called Fast Correlation-Based 

Filter (FCBF), which involves first selecting relevant features and then through a relevance and 

redundancy analysis, identifying predominant features from the selected set to enhance the feature 

selection process. For each available feature in the input dataset, FCBF computes the Symmetrical 
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Uncertainty (SU) (The IG of a feature F given a class C divided by the sum of entropies of A and 

C together) (See Equation 2.8), then ranks the SU scores to eliminate redundant features.   

Yu and Liu (2004) [184] applied FCBF on gene expression microarray data analysis to show the 

merit of eliminating redundant features to accurately classify the diseases or phenotypes.    

Minimal-Redundancy and Maximal-Relevancy (mRMR)  

mRMR involves selecting the feature subsets with maximum relevancy to the class label and 

minimum redundancy among the features [35]. In doing so, mRMR considers the tradeoff between 

redundancy and relevance features, using F-Statistics to determine the relevancy of the features 

with the class labels, and Person Correlation to determine the feature redundancy as shown in 

Equation 2.17 [191,111]. 

𝑓𝑚𝑅𝑚𝑅(𝑋𝑖) = 𝐼 (𝑌, 𝑋𝑖) −
1

|𝑠|2
∑ 𝐼 (𝑋𝑠, 𝑋𝑖)𝑋𝑠𝜀𝑆  (2.17) 

Where, 

Y = Class label 

S = Set of selected features 

|𝑆| = Number of features  

I = Mutual Information 

𝑋𝑖 = Features that are not selected now 

𝑋𝑠𝜀𝑆 = One feature out of the feature set ‘S’ 
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Maximum Marginal Relevance (MMR) 

MMR is a divergence-based Filtering method that is mostly used in text classification and 

document retrieval problems for re-ranking the feature subsets. In a text summarization problem, 

MMR is used to keep the feature redundancies of the results to a minimum while maintaining the 

query relevance of the already ranked documents to increase the results’ diversity. MMR considers 

the similarities of the key phrases along with the similarities of already selected phrases [191]. The 

mathematical notation of MMR is given in Equation 2.18. 

MMR = arg 𝑚𝑎𝑥𝐷𝑖𝜀𝑅

𝑆

[𝜆 𝑆𝑖𝑚1(𝐷𝑖, 𝑄) − (1 − 𝜆) 𝑚𝑎𝑥𝐷𝑗𝜀𝑆[ 𝑆𝑖𝑚2(𝐷𝑖, 𝐷𝑗)]  (2.18) 

Where, 

𝐷𝑖̅= Documents in the data collection ‘C’ 

Q = Query 

R= Relevant documents in collection ‘C’ 

S = Current results set 

There is other multivariate feature selection for Unsupervised Learning tasks specifically 

clustering problems such as Localized Feature Selection Based on Scatter Separability (LFSBSS), 

Multi-Cluster Feature Selection (MCFS), and Feature weighting Kmeans [89,114]. However, these 

methods are out of the scope of this research. Table 2.1 depicts a summary of the Filtering methods 

which we have discussed. 
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Table 2.1: Common Filtering Methods of Feature Selection 

Name Type  Mathematical  

Equation 

Relevance 

 Measure  

Strength  Weakness  

F-score Univariate 𝐹𝑖𝑅𝑖

=  
|𝑥̅𝑖

(0)
− 𝑥̅𝑖

(1)
|

√𝑣𝑎𝑟(𝑥𝑖)(0) + 𝑣𝑎𝑟(𝑥𝑖)(1)
 

Sample 
mean  

Simple and 
straightforward to 
define correlation 
and easy to 
implement   

It cannot consider the effect of 
combined features and only 
considers features-class correlation 
individually   

IG Univariate IG (T, F) = Entropy (T) –  

 ((|Tf| / | T |) * 

Entropy (Tf)) 

Mutual 
information  

It shows the 
worthiness of a 
feature by using the 
class information as 
an efficient 
measure  

Biased results for features with 
large numbers of distinguished 
values  

It only considers class-feature 
correlations  

Pearson 
Correlatio
n 

Univariate r = 
∑(𝑋𝑖−𝑋̅𝑖)(𝑌𝑖−𝑌̅𝑖)

√(𝑋𝑖−𝑋̅𝑖)2√(𝑌𝑖−𝑌̅𝑖)2
  

  

Linear 
correlation 
in statistics  

Simple to compute 
and it shows the 
linearity of a 
relationship  

Works only on continuous features 
and does not consider feature 
redundancy  

MIC Univariate 𝑀𝐼𝐶(𝐷)

=   max
𝑥𝑦<𝐵(𝑛)

{𝑀(𝐷)𝑥,𝑦} 

Correlation 
between 
variables 

It measures the 
non-linear and 
linear correlations 
of variables  

It does not consider feature 
redundancy issue  

GR Univariate GR = 
𝐼𝐺

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐼𝑛𝑓𝑜(𝑆,𝐴)
 Mutual 

information  
It removes the bias 
of favoring features 
with a large number 
of distinct values 
inherited from 
mutual information  

It prefers features with limited 
values and does not consider 
redundant features  

SU Univariate SU(A, B) = 
2×𝐼𝐺(𝐴|𝐵)

𝐸(𝐴)+𝐸(𝐵)
 

  

Mutual 
information 

It overcomes the 
bias of the mutual 
information 
method by not 
favoring features 
with a large number 
of distinct values  

It prefers features with limited 
values and does not consider 
redundant features 

ReliefF Multivaria
te W[A] = W[A] -  

(𝑑𝑖𝑓𝑓
A,𝑅𝑖,𝐻

m
)

 (𝑑𝑖𝑓𝑓
A,𝑅𝑖,𝑀

m
)
  

  

Proxy 
statistics 

For each instance, it 
repeatedly allocates 
the largest score to 
the feature which 
discriminates it 
from the 
neighboring 
instances of a 
different class 

It is sensitive to noisy data and 
does not reduce feature-feature 
redundancy  

CST Univariate 𝑋2 =
(𝑂−𝐸)2

𝐸
   Observed 

and 
expected 
frequencies 

Straightforward 
calculations and 
robust in terms 
data distribution  

Sensitive to dataset set size and 
cannot establish casual correlation 
between two features 
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L2 Univariate 𝐿2(𝑌, 𝑋)

=  ∑ [𝑃(𝑌𝑖,𝑋𝑗)
𝑖,𝑗

− 𝑃(𝑌𝑖)𝑃(𝑋𝑗)]2 

Distance 
between 
the 
observed 
and 
expected 
frequencies 

It simplifies the 
hypothesis testing 
of CST method by 
providing a more 
generic hypothesis  

Does not consider feature-feature 
correlations and relies on a cut-off 
score  

VA Univariate |𝑉𝑎| = √(𝐼𝐺)2 + (𝑇𝑆𝑇)2

  

Vector of 
scores of 
both IG and 
CST results 

It defines a new 
vector based on the 
aggregation of the 
scores of multiple 
filtering methods to 
reduce result 
variability  

Does not consider feature-feature 
correlations  

GI Univariate 
𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖)2

𝑛

𝑖=1
 

 

Statistically 
significant 
measure  

Straightforward to 
compute  

It does not consider feature 
redundancy and it does not 
consider the changes in a data 
sample  

OR Univariate 𝑂𝑑𝑑𝑠𝑅𝑎𝑡𝑖𝑜(𝐹)

= log
𝑜𝑑𝑑𝑠(𝑊|𝐶1)

𝑜𝑑𝑑𝑠(𝑊|𝐶2)

=  log
𝑃(𝑊|𝐶1)(1 − 𝑃(𝑊|𝐶2))

(1 − 𝑃(𝑊|𝐶1))𝑃(𝑊|𝐶2))
 

 

Probabilities 
of two 
features 
appearing 
and non-
appearing 
together in 
the dataset  

It is a versatile 
method besides 
one can easily 
present the 
sampling 
distribution of the 
odds ratio  

The odds ratio is like the relative 
risk if the target class is rare 

ECE Univariate 𝐸𝐶𝐸(𝑡𝑘)

= 𝑝(𝑡𝑘) ∑ 𝑝(𝑐𝑖|𝑡𝑘)

|𝑐|

𝑖=1

log
𝑝(𝑐𝑖|𝑡𝑘)

𝑝(𝑐𝑖)
 

Mutual 
information  

It can be used as a 
loss function for 
measuring the 
performance of 
classification 
problems  

It only considers the correlation 
between the feature and the class 
label 

DFS Univariate DFS(t) = 

∑
𝑃(𝐶𝑗|𝑡|)

𝑃(|𝑡̅|𝐶𝑗)+𝑃(|t|𝐶𝑗̅)+1

𝑀
𝑗=1   

  

Probability 
of 
occurrences 

It chooses unique 
features while 
discarding 
uninformative 
features  

It has been evaluated mainly in 
text-related applications, thus 
highly frequent unrelated text can 
be accounted for during the 
computations  

FCBF Multivaria
te 

𝑓𝑚𝑅𝑚𝑅(𝑋𝑖)
= 𝐼 (𝑌, 𝑋𝑖)

−
1

|𝑠|2 ∑ 𝐼 (𝑋𝑠, 𝑋𝑖)

𝑋𝑠𝜀𝑆

 

Symmetrical 
Uncertainty  

It removes pairwise 
based on 
symmetrical 
uncertainty scores 
to enhance 
efficiency for 
datasets with large 
numbers of 
features  

When two redundant features, A 
and B, have good correlation with 
another selected feature (V), then 
one of the two features (A or B, 
with the larger rank) will be chosen 
and the other one will be 
discarded. In this case, FCBF is not 
considering which of the two 
features better contributes to the V 
based on the relevancy. 

FCBF deals with continuous 
features, therefore discretization is 
done on the features prior to 
feature selection  
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mRMR Multivaria
te 

𝑓𝑚𝑅𝑚𝑅(𝑋𝑖)
= 𝐼 (𝑌, 𝑋𝑖)

−
1

|𝑠|2 ∑ 𝐼 (𝑋𝑠, 𝑋𝑖)

𝑋𝑠𝜀𝑆

 

F-Statistics 
and a 
measure of 
correlation  

It detects feature-
feature correlations 
but in a bivariate 
manner    

The high sensitivity of redundancy 
and relevance measures to outliers 
in the data. In addition, it does not 
account for the coherence in 
combinations of  features, i.e. how 
two or more features work 
together with the class label. 

MMR Multivaria
te 

MMR = arg 
𝑚𝑎𝑥𝐷𝑖𝜀𝑅

𝑆

[𝜆 𝑆𝑖𝑚1(𝐷𝑖 , 𝑄) −

(1 −

𝜆) 𝑚𝑎𝑥𝐷𝑗𝜀𝑆[ 𝑆𝑖𝑚2(𝐷𝑖 , 𝐷𝑗)

] 

Feature 
similarities 

It considers 
minimizing 
redundancy of 
features while 
sustaining 
relevance 

It requires parameter tuning for 
sustaining good results  

CFS Multivaria
te 

Merits = 
𝑘𝑤𝑐𝑓̅̅ ̅̅ ̅

√𝑘+𝑘(𝑘−1)𝑤𝑓𝑓̅̅ ̅̅ ̅̅
 

 

 

Symmetrical 
uncertainty 
and specific 
heuristic   

It ignores the 
irrelevant features 
that demonstrate a 
lower correlation 
value 

Does not consider class labels that 
are continuous 

 

2.4.2 Wrapping Approach 

 

Wrapper approach in feature selection is mainly associated with Supervised Learning algorithms 

where all possible combinations of features with the class label in the training dataset are evaluated 

to determine the smallest optimal subset of features. Unlike the Filtering approach, Wrapper 

methods define the relevance of a subset of features based on the ability of that subset in predicting 

the class labels [100]. They also take both feature correlations and feature redundancies into 

consideration to evaluate the optimum feature subsets [175]. Therefore, the Wrapper method uses 

a classification algorithm to determine the quality and accuracy of the selected feature subsets [19]. 

Depending on the type of data used, the classification data processing is repeated on the data until 

the best feature subsets are obtained. However, although the Wrapper method is better than the 

Filtering method in terms of optimizing the performance of the resulting model, it is slower and 

computationally expensive [19,139,140]. Moreover, it has an increased risk of model overfitting 

and requires a lot of time and resources as it seeks optimum feature subsets from a massive space 

of dimensionality [73].  Thus, an independent validation data sample is needed to evaluate the 

selected subset of features for generalization.  Figure 11 shows the lifecycle of a Wrapper. 
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There are several literatures by various scholars which address the usefulness and effectiveness of 

the various Wrapper methods in feature selection and classification [100,174]. Some of them 

utilize those methods individually or in combination to produce new feature selection algorithms 

that outperform the conventional Wrapper methods by overcoming the weaknesses associated with 

the existing methods. Taradeha et al. (2019) [162] proposed HGSA (Hybrid Gravitational Search 

Algorithm), a Wrapper-based feature selection algorithm that utilizes the Gravitational Search 

Algorithm (GSA) [141] with Crossover and Mutation evolutionary operators as the search strategy, 

and using the k-nearest neighbor algorithm (kNN) [59] and decision tree [137] as classifiers. The 

primary purpose of mutation evolutionary operators here is to maximize the algorithm 

performance. To validate the proposed mechanism, experiments were carried out using 18 

different datasets obtained from the UCI data repository [94].  The evaluation results showed that 

HGSA achieved superior performance with 88% and 83% accuracies when used with decision tree 

and kNN classifiers, respectively.  

  

Figure 11: Wrapper Approach [127] 
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Wang, Khoshgoftaar, and Napolitano [175] focused on Wrapper-based feature selection 

approaches using real-world software metrics to assess the performance of the classification 

model. The relationship between internal learner and external learner were measured using four 

versions of telecommunications data containing 42 software metrics along with five machine 

learning algorithms, i.e. Naïve Bayes (NB) [38], Perceptron Multilayer (MLP) [143], K-nearest 

neighbors (KNN) [59], Support Vector Machine (SVM) [30], and Logistic Regression (LR) [171]. 

The result showed (1) the performance is rare when internal and external learner match; (2) NB 

shows the best performance within the Wrapper; (3) LR is often the best learner for classification 

models irrespective of the learner within the Wrapper. 

Zena and Gillies [189] presented Wrapper-based feature selection using two categories i.e. 

Randomized and Deterministic Wrapper for breast cancer prediction. The authors used SVM [30] 

to distinguish between cancerous and non-cancerous breast tumors—SVM reported very precise 

results. Gradient-based leave-one-out gene selection (GLGS) [46] and Leave-one-out calculation 

sequential forward selection (LOOCSFS) [172] are two approaches performed on SVM, whereby 

GLGS was found to be better than LOOCSFS. The same data was trained on the randomized 

Wrapper method and genetic algorithms (GA) along with simulated annealing. It was identified 

that like all other Wrappers, randomized algorithms occupy more CPU time and more memory to 

run. 

Xue, Yao, and Wu [180] presented a Wrapper-based ensemble feature selection method called 

hybrid Genetic Algorithm (GA)- and Extreme Learning Machine (ELM)-, based on the HGEFS 

algorithm, to improve accuracy. This proposed model adopts GA [87] and ELM [14] as search 

mechanisms and a modified extreme learning machine called EM-ELM [40] as the classifier to 

identify the optimal feature subsets. This method utilizes the ensemble approach to further stabilize 
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and improve the performance. Few sets of candidate features are chosen based on the computed 

accuracies and the smallest feature subset is identified using the EM-ELM output weight. Several 

UCI datasets and two microarray datasets are used to test the effectiveness of HGEFS along with 

other machine learning algorithms. The results demonstrated HGEFS to be a competitive and 

robust Wrapping method in terms of the derived models’ accuracy. 

2.4.3. Embedded Methods 

 

Distinct to both Filter and Wrapping methods, the Embedded method has an inbuilt mechanism to 

perform both classification and model construction tasks together (see Figure 12). The techniques 

used to evaluate the optimal feature subset depend on the classification algorithm given.  

Embedded methods overcome some of the computational complexities associated with the 

Wrapper method by performing both feature selection and model construction together [93]. L1 

(LASSO) [192]  regularization and decision tree (DT) [138] with linear classifiers like support 

vector machine (SVM) are examples of Embedded methods. For a decision tree, the common 

Embedded method involves selecting a feature at every stage of the tree growing process and 

grouping features into smaller subsets.  

 

Figure 12: Embedded Approach [147] 

Peng and Xu (2013) [131] developed a local information-based Embedded method for regression 

analysis to address drawbacks such as high computational complexities, algorithm implementation 
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difficulties, high computational cost, and convergence. Incorporating local data information helps 

to weight and rank each feature using their least squares loss value. The L1-regularization method 

was used to further enhance the performance by improving the feature rankings derived from 

different datasets. To evaluate the model’s performance, it was applied on three different synthetic 

datasets and ten UCI datasets and the generated results were compared against other feature 

selection methods such as Neighbor-based feature selection (NNFS) [118], Feature Vector 

Machine (FVM), and mRMR [35]. The results suggested that the regression analysis-based 

Embedded method performs well on regression problems and data with high dimensionality and 

convergence.  

Hernandez et al. (2007) [57] developed a machine learning algorithm to help molecular cancer 

diagnosis, that presented an Embedded-based feature selection approach for gene selection and 

classification. The proposed approach consisted of two main phases. The first phase involved 

reducing the feature space through conventional pre-selection of the genes using any Filtering 

criteria. The second phase involved further reducing of the feature space through identifying the 

predictive gene subsets. The fitness of the identified smaller gene subsets was then measured 

through an SVM classifier. The method was trained over three datasets consisting of gene 

expression data pertaining to acute lymphoblastic leukemia (ALL), colon cancer, and lymphoma 

using SVM-based selection algorithms [51]. The comparison showed that the proposed method 

performs more favorably on the gene expression data than the reference methods. 

Discovering bio-makers, characteristics of genes or molecules that constitute a certain illness or a 

disease, is a hot topic that has gained the attention of many scholars. A study by Abeel, Helleputte, 

Peer, Dupont, and Saeys (2009) [5] focused on discovering an efficient feature selection technique 

for microarray data to identify potential biomarkers. Since most of the available bio-maker 
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selection algorithms produce different results when applied on the same dataset due to different 

parameter settings, this problem can negatively impact the selection of features. Therefore, the 

authors proposed a general experimental system based on ensemble learning with an SVM 

classifier to be integrated into the biomarker identification process to increase robustness. The 

system was applied on four datasets of cancer diagnosis microarray data obtained from previous 

literature to evaluate the stability and performance of the established method in gene selection. 

The results discovered that the stability of RFE tends to diminish when the number of selected 

features decreases, whereas the proposed ensemble method tends to have an enhanced stability. 

Min and Fangfang, (2010) [112] proposed a Filter-Wrapper-based hybrid feature selection method 

called FWHM (Filter-Wrapper Hybrid Method) to enhance the feature selection efficiency. The 

proposed method has two basic phases: Filter and Wrapper. The first phase involves ranking the 

feature using six different criteria namely Correlative Family Selection, ReliefF, Class 

Separability, Mahalanobis Distance, Multivariate Correlation Coefficient, and Mutual 

Information. The second phase involves deciding on the final feature subset using improved clonal 

selection algorithms such as the Adaptive Genetic Algorithm (AGA) [193], Chaotic Binary 

Particle Swarm Optimization (CBPSO) [31], Restrictive Multi-classes Classification Model Based 

on Chaotic Binary Particle Swarm Optimization, and the Clonal Selection Algorithm (CSA) [193].   

Hamed, Dara, and Kremer [54] investigated a new embedded feature selection called Recursive 

Feature Addition (RFA) to improve classification accuracy. This process begins with an empty set 

of features and proceeds to add more features until it meets a threshold. The authors applied the 

RFA algorithm on five different benchmark datasets, by comparing results obtained using other 

feature selection algorithms, i.e. two Wrappers: Wrapper subset evaluation [100], Classifier subset 

evaluation [123]; two filters: CFS subset evaluation [52], Consistency subset evaluation [160], and 
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one embedded: Recursive Feature Elimination (RFE) [182]. The comparative analysis found that 

RFA achieved superior accuracy and time efficiency compared to Filter, Wrapper, and other 

embedded approaches. 

Maldonado and Lopez [106] investigated embedded feature selection strategy to solve the class-

imbalanced issue [37] by designing two types of Support Vector Machine (SVM) namely, Cost 

Sensitive SVM (CS-SVM) [176] and Support Vector Data Description (SVDD) [89]. The 

proposed methods used a Quasi-Newton update and Armijo line search. The experiments were 

performed on twelve highly imbalanced microarray datasets using linear and Gaussian kernels. 

The generated result showed that CS-SVM achieved the highest overall predictive accuracy 

relative to other well-known feature selection approaches such as Fisher [77], RFE [182], BFE 

[105], KP-CSSVM [105], and KP-SVDD [91]. 

2.5 Discussion  

Feature selection has some challenges including relevance definition for generating the features’ 

scores, domain expert availability to choose which features to keep, and dealing with complex 

data, among others.   

2.5.1 Complex Data   
 

Complex data refers to any type of data that requires complex sequential processes to convert it 

into normal data, which can then be used to derive meaningful information [134]. Multimedia data, 

such as audio and video files, images, sound files with text and motion, 2D or 3D coordinates, 

mammographic data, or data files with a combination of two or more data types are some examples 

of complex data [115]. This data can be either static media such as texts, images, and graphs, or 

dynamic media involving audio, video, and speech. Domain experts often find it difficult to work 

with complex data as it requires a massive storage facility and advanced tools and technology to 
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process the information. The various forms, formats, dimensions, and the dynamic nature of 

complex data make it further challenging to handle [18]. 

For instance, consider a video file: a single video frame can comprise a large amount of data in 

various formats. Each frame can have different people and objectives that provide various 

information within seconds such as location, size of the entity, speed, etc. Extracting features from 

such media is a tedious task [18]. To enable the feature selection process, these complex file 

formats must be converted into readable and processable formats. Panchromatic images, digital 

images, graphics, or animations can be converted into an N x M matrix of pixels (numerical or 

representational forms) through image mining techniques such as compressive sampling [36], 

Clustering, and Association Rules [104]. Converting the original data into different formats may 

confuse the mathematical metrics used for ranking making the feature selection process more 

challenging as it can alter the important links between the candidate features and the class labels 

by changing the data structures. To yield better prediction outcomes, it is vital to take data 

structures into consideration when determining the optimal feature subsets [92].   

Tang et al. (2014) [161] discussed the challenges associated with social media data in the feature 

selection process. There are different types of data attributes present in various social media 

domains. A typical social media platform has posts and followers as the main attributes with 

behaviors of following each other and making posts. But there is additional information and data 

linkages, such as who follows whom (user-user relations), who generates the posts (ser-post 

relations), and who likes and comments on the social media posts, which significantly differs from 

traditional attribute-value data. According to Tang et al. (2014) [161], this attributes and linkages 

data can be a challenge as well as an opportunity for the feature selection process. It can be 

challenging because most of the available feature selection methods choose features based on the 
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assumption that the attribute data values are independent and distributed identically. This is not 

always the case for complex information such as social media data. However, it can also be an 

opportunity for more investigations and research on how to use linkage data to develop advanced 

feature selection methods that yield better results than the conventional methods.  Tang et al. 

(2014) [161] proposed a new feature selection mechanism called LinkedFS, that integrates 

attribute data values with linkage data for selecting features in social media data. The experimental 

results indicated that the number of selected features, percentage of labeled data, and the 

relationships/ linkage among the attribute values play a massive role in optimizing the feature 

selection performance.   

A feature selection method using GR to select influential features that could be used to classify 

audio data was proposed by [84]. Initially the audio data is extracted into numerical format (.Wav) 

using the MIRToolBox tool [84]. The optimal features are then selected based on the GR of each 

extracted numerical feature with respect to the pulse clarity. The authors derived approximately a 

90% success rate in music genre classification using the proposed method.  

Saravanan (2018) [146] addressed complex data with feature selection and extraction in video data 

files and proposed an automated key frame-based shot method to effectively extract and select 

features from the key frames. In this mechanism, video files are first converted into image frames 

based on the image pixel values and the errors of the images are eliminated using image 

histograms. The error removal process uses the RGB values of each image’s features to remove 

the redundant images and continues until the optimal image features are determined.  Foschi et al. 

(2002) [43] presented a novel approach to extract features and patterns from images. The proposed 

model was intended to identify the most relevant features through the information derived from 
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the images and enable the users to define new features to determine undefined regions. The 

proposed mechanism exhibited high performance in identifying the patterns on the images.   

2.5.2 Results Variations   
 

In many situations, when Filtering methods are applied on the same dataset, different results are 

generated [72]. This situation arises mainly because most of the Filtering methods use different 

mathematical and ranking techniques to measure correlations. For instance, IG uses Entropy, and 

CST uses observed and expected frequency to determine the relevancy of the features to the class 

label. This produces different results, which in turn may create confusion for the end-user 

particularly when there is a massive number of features in the result set.    

To deal with the issue of results variation, researchers such as 72,151,168 created feature selection 

methods that integrate the results offered by multiple Filtering methods to stabilize results. 

Kamalov and Thabtah (2017) [41] created a new Filtering method called VA which normalizes 

the scores obtained by CST and IG and then creates a new vector score (V_score) per feature in 

the dataset. Features with a V_score less than 50% of the top V_score obtained by the CFS Filtering 

method are discarded to refine the final feature set. Filtering methods such as VA or L2 can be 

seen as a promising solution to the results variation issue; nevertheless, such methods necessitate 

computing the scores using multiple Filtering methods, normalizing the scores, integrating the 

scores to obtain new global scores, and then involve ranking and a computational cost. A more 

realistic approach is to create a new model based on existing mathematical models of multiple 

Filtering methods and then use that model to produce the results thus saving on many 

computations.   
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2.5.3 Real-Time Processing  
 

There are certain scenarios, such as medical diagnosis tools and spam detection systems, where 

real time processing of data is crucial. Usually in such situations data continues to accumulate and 

the amount of data or features to be processed is infinite and unpredictable [92]. For example, 

consider an online spam detection system developed to distinguish genuine e-mails from spam e-

mails. The number of e-mails received per given period is always unknown and the classification 

task should be performed in real-time. In such situations it is not possible to wait until the data-

gathering process is completed to perform the feature selection task. This issue has created the 

need for a feature selection method that can maintain and update feature subsets while the data is 

streaming [75,179]. 

Xuegang et al. (2016) [181] proposed online feature selection as an efficient technique to handle 

large data streams without the knowledge of the entire feature space. The proposed mechanism 

assumes that even though several features keep changing over the time, the number of data 

instances is fixed. The authors used online group feature selection approaches such as GFSSF 

(Group Feature selection with Streaming Features) and OGFS (Online Group Feature Selection) 

to select optimal feature subsets while eliminating the feature redundancies in data streams. 

Wu et al. (2010) [179] also proposed a novel approach called Online Streaming Feature Selection 

(OSFS) to distinguish between redundant, weakly relevant, weakly redundant, and non-redundant 

features of streaming data to identify the Best Candidate Feature sets (BCF). The performance of 

the proposed model was compared to two well-known techniques: Grafting and Alpha investing. 

Further, an additional algorithm called Fast-OSFS which involves re-examining the selected 

features in terms of their inner redundancies and outer redundancies was introduced to improve 

the efficiency and performance of the original OSFS. The experimental results showed that the 



www.manaraa.com

 

59 
 

proposed models perform better than the existing online streaming feature selection methods in 

terms of compactness and better accuracy. Zhou et al. (2005) [194] suggested Alpha-investing as 

an effective technique to deal with challenges associated with classification of large streams of 

text data while maintaining high Incremental Feature Selection (IFS) performance.   

2.6 Chapter Summary 

Feature selection in the context of Supervised Learning tasks is the process by which suitable 

subsets of features are selected based on a relevance metric to efficiently learn a model using 

machine learning techniques. Filtering, Wrapping and Embedded are the main approaches of 

feature selection that utilize different schemes to select the final subset of features. This chapter 

reviewed and critically analysed various feature selection methods with a focus on Filtering 

approach in the context of Supervised Learning. We also highlighted the learning lifecycle within 

machine learning and described the common learning types. More importantly, we critically 

analyzed Filtering methods by highlighting issues to be addressed when developing new feature 

selection methods. Specifically, we discussed common Filtering methods and identified their 

mathematical models and the numerous ways they compute scores to determine the subset of 

features. This chapter also highlighted challenges associated with the Filtering-based feature 

selection approach including result variations, data complexity, and real time data processing. The 

discussion showed that there are two primary factors needed for the success of feature selection: 

an intelligent method to assist the user by defining a cut-off that splits relevant and irrelevant 

features, and a normalized mathematical method to reduce the volatility of existing scores. The 

former factor can be dealt with by developing a cutoff procedure independent from the Filtering 

method with an ability to suggest the subset of features to the end user saving extensive manual 

processing that requires experience and care. Whereas the latter factor can be dealt with by 
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developing a new Filtering method that involves learning from the data, especially feature-to-

feature correlations to minimize feature-to-feature redundancy.  

In the next chaper, we propose a new feature selection method called CARF and a new cut-off 

procedure that recommends the ideal number of features to the end-user. 
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Chapter Three 

3. The Proposed Feature Selection Method based on Class 

Association Rules 

3.1 Introduction  

In this chapter, we introduce the CARF (Class Association Rule Filter) method and the new cut-

off procedure that is based on Information Theory approach. These two methods combined 

determine small subsets of features by calculating a cut-off value to distinguish between relevant 

and irrelevant features in the feature selection process. The methodology followed is based on 

CAR mining and depicted in Figure 13. We assume that the input dataset has been pre-processed 

in terms of missing values, discretization, normalization, etc. The first phase in the methodology 

is to transform the processed dataset into Line Space (LS) data format to efficiently discover the 

rules. All items will be represented by ColumnID:LineID, which simplifies the rule discovery step 

by efficiently computing itemsets’ support and confidence values (See Section 3.2 for definitions). 

The CARF method is focused on discovering rules, for which we need one data scan. 

The choice of the Vertical CAR approach for 1-rule discovery was based on several factors 

including:  

1) It represents the input dataset in a compact data structure, i.e. LS and Item Space 

(IS) layouts, that enables an efficient search for items’ information during the 

process of building the rules  

2) It improves the computation process as discussed in Chapter One. 
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3) It has proven experimentally to be better than the Horizontal CAR approach in 

multiple studies as discussed in Chapter One. 

The CARF method does not implement all steps of the Vertical CAR approach as we will see later 

on, rather it adopts this approach for data representation to enable efficient 1-rule discovery; thus, 

classifier building, and prediction phases are excluded since they are not part of the feature 

selection process. Once the rules are discovered, we utilize their features and data coverage 

information to calculate the scores of the available features. Each feature appearing in a rule will 

have a score assigned to reflect its relevance. Features that appeared in the rules will a have better 

chance of being chosen since they will have a high probability of classifying training instances. 

Once CARF is selected, the end-user can choose MutInfoMethod (the new cut-off procedure) to 

compute a cut-off score based on all ranked features. The cut-off score is an indicative measure 

that shows how many features should be retained by the user. The details on how the cut-off is 

computed will be provided in Section 3.5.3. Before explaining the main steps of CARF and the 

search method, we introduce the CAR mining approach adopted to design and implement CARF. 

The concentration will be on CAR mining terms, vertical mining, and data layouts. 
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Figure 13: CARF Method 

 

3.2 Terms and Example of CAR Mining   

Typically, the CAR mining approach adapts an Association Rule Mining algorithm to discover a 

complete set of rules. A pruning step is then invoked on the consequent part of the rules to filter 

out the discovered rules into a subset that contains the class label. All other rules that have feature 

values on the consequent part of the rules are discarded since they add no value during the 

prediction step. The retained subset of rules is then used to forecast test instances. Since the 

proposed filtering method adopts CAR mining to devise the rules, the below terms are used by 

CARF when a training dataset T with labelled class C is used as an input: 

1-  An itemset items is a form of frequent pattern that consist of a feature Fi and its value fij, 

denoted as (Fi, fij).  

2-  The ith training instance in T is a list of feature values (Fi1, fi1), …, (Fin, fjn), plus a class label 

denoted by ci.  
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3-  An itemset is a set of disjoint feature values occurring in a training instance, denoted as < (Fi1, 

fi1), …, (Fin,  fin)>. 

4-  A 2-itemset is a set of two disjoint feature values occurring in a training instance, denoted as  

< (F1, f1), (F2,  f2)>. 

5-  The frequency (freq) of itemset items in T is the number of instances in T that match the item. 

6-  An itemset's items passes the minimum support threshold (minsupp) if, freq(items)/ |T| ≥ 

minsupp. Such itemset is said to be a frequent itemset. 

7-  From an item AB we can generate a rule R: 𝐴 → 𝐵. The rule passes the minimum confidence 

threshold (minconf) if  freq (A B)/ freq( A) ≥ minconf.  

8- 1-rule is a special case of an itemset that passed minsupp and minconf of the format <antecedent, 

class>, where antecedent is 1-temset and the consequent is a class value.  

3.3 CAR Mining Example  

We demonstrate an example to show how Class Association Rule mining algorithms work to 

elaborate on how the CARF method learns the rules. Consider the dataset displayed in Table 3.1A 

and suppose that the minimum support count is set to 2; in other words, for a feature value to be 

considered in a rule it must occur in the dataset at least two times, and the minimum confidence 

(minconf) is set to 70%. Table 3.1B depicts that all features’ values with support frequencies larger 

than the minimum support count, and therefore the complete candidate 1-itemset, are kept as they 

are all frequent. Table 3.1C displays the candidate 2-itemset that resulted from Table 3.1B along 

with their support frequencies from which any 2-candidate itemset that has not passed the 

minimum support count has been removed. The remaining frequent 2-itemset which passed the 
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minimum support requirement is utilized to generate the candidate 3-itemset as shown in Table 

3.1D. In that table, only two candidate 3-itemsets are frequent and the rest are removed.  

Table 3.1A: Sample Dataset of Eight Instances  

Feature 1: 
Smoker 

Feature 2: 
Gender 

Feature 3 (Class): 
Potential Heart Problems 
in the Future 

False Female No 

True Female No 

True Male Yes 

True Male Yes 

False Male No 

True Female Yes 

False Female No 

True Male Yes 

  

 Table 3.1B: Candidate 1-itemset from Table 2A  

Candidate 1-itemset Support Count  

False 3 

True 5 

Female 4 

Male 4 

Yes 4 

No 4 

 
Table 3.1C: Candidate 2-itemset from Table 2A  

Candidate 1-itemset Support Count  

False, Male 1 

False, Female 2 

True, Male 3 

True, Female 2 

False, Yes 0 

False, No 3 

True, Yes 4 

True, No 1 

Male, Yes 3 

Male, No 1 

Female, Yes 1 

Female, No 3 

 

Table 3.1D: Candidate 3-itemset from Table 2A  

Candidate 1-itemset Support Count  

False, Female, NO 2 

True, Male, Yes 3 

True, Female, Yes 1 

True, Female, No 1 

False, Male, Yes 0 
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The complete frequent itemsets generated from the dataset (Table 3.1A) are now available, so 

association rules can be produced using the confidence test as shown in Table 3.1E. In that table, 

rules that pass the minconf threshold are displayed. However, a filtering process is applied to keep 

the rules with class value on its consequent (the highlighted yellow rules) as these are the CARs 

that can be employed for prediction, and all other rules will be pruned.  

Table 3.1E: Association Rules Produced from Table 2A and Potential Class Association Rule in Yellow  

Rule # Rules Support Count  Confidence  

1 Yes ⇾True 4 100%  

2 False ⇾ No 3 100%  

3 Male, Yes ⇾ True 3 100%  

4 True, Male ⇾ Yes 3 100%  

5 False, Female ⇾ No 2 100% Remove 

6 True ⇾ Yes 4 80%  

7 No ⇾False  3 75%  

8 Male ⇾ True 3 75%  

9 No ⇾ Female  3 75%  

10 Female ⇾ No 3 75%  

11 Yes ⇾ Male 3 75%  

12 Male ⇾ Yes 3 75% Remove 

13 True, Yes ⇾ Male 3 75%  

14 Yes ⇾ True, Male 3 75%  

15 Male ⇾ True, Yes 3 75%  

 

 

Table 3.1F: Rule Evaluation Process Against the Dataset of Table 2A 

Feature 1: 
 Smoker 

Feature 2: 
 Gender  

Feature 3 (Class): 
Potential Heart Problems 

in the Future 

Rule # Covering the Instance 

False Female No 2 

True Female No 10 

True Male Yes 4 

True Male Yes 4 

False Male No 2 

True Female Yes 6 

False Female No 2 

True Male Yes 4 

 

Table 3.1G: Class Association Rule After Evaluation  

Rule # Rules Confidence 

2 False ⇾ No 100% 

4 True, Male ⇾ Yes 100% 

6 True ⇾ Yes 80% 

10 Female ⇾ No 75% 
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To evaluate the retained rules’ goodness, they will be tested on the training dataset one by one in 

a top down fashion using their confidence values. This pruning step is crucial as we are only 

interested in rules that have classified data instances and differ from other rules to ensure a 

reduction in rules similarity. Table 3.1F depicts the training data instances along with the rules 

used to correctly classify; these are the final CARs that we keep as shown in Table 3.1G. Potential 

similar rules such as #5 and #12 have been removed since other similar rules with a higher position 

classified their instances and thus this procedure minimizes rule redundancy. It should be noted 

that we do not follow the rule generation and evaluation process described earlier in the proposed 

CARF method, rather we simplify it to produce rules with 1 feature value in its antecedent part 

(left hand side) only, as discussed later in Section 3.5.2. 

3.4 Proposed Filtering Method Data Layout (Vertical Mining) 

Most CAR mining algorithms adapt the horizontal data format model to represent the input dataset. 

When using the horizontal data model, the input dataset is represented by sets of rows and columns 

where each row corresponds to a data example and each column corresponds to a feature (see 

Table 3.1A). Usually the CAR mining algorithm examines the data examples in top down fashion 

during the learning step (discovering frequent itemsets). It computes the frequency (support) of 

the candidate itemsets storing them within a data structure. For example, the CBA algorithm [48] 

iterates over the training dataset m times using the Apriori step-wise search method [7], where m 

corresponds to the number of data scans needed to produce the entire frequent itemsets; this is not 

cost-effective in regards to computation complexity as stated earlier. CBA is one of the successful 

CAR mining algorithms that implements the Apriori itemset_generation method by taking at 

iteration m the set of frequent (m-1)-itemset to produce candidate m-itemset and from which it 
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derives m+1 the frequent itemsets. The CBA algorithm and its successors utilize horizontal data 

layout thus they inherit problems from Association Rule Mining such as: 

• Computation complexity 

• Exponential growth of candidate itemsets and hence increasing the possible number of rules 

• Do not deal with datasets with imbalanced class labels  

• Rules overlapping in data instances causing large classification models in terms of the 

number of rules.  

Vertical Mining enhances the efficiency of discovering frequent itemsets and simplifying the 

process of rule generation used by algorithms that employ the Horizontal Mining approach. This 

approach uses an efficient data layout called Tidlist (T-list) or LS to process large datasets in 

parallel and distributed data processing applications [55,163,167]. A dataset in Vertical Mining is 

represented by items, along with their line numbers that they incurred in the training dataset, in a 

special data structure called T-list (see Tables 3.2B and 3.2C). Using this data format, the process 

of computing support values for itemsets and confidence values for the rules will be simple using 

intersections of the T-lists of disjoint itemsets. When compared with the Horizontal Mining 

approach, the Vertical Mining approach reduces the number of passes over the dataset to a single 

time [78,99].  

CARF uses a more efficient data layout based on the LS format that maps each feature and the 

class labels to ease support and confidence computations by repeatedly transforming the data 

between LS and Item Space (IS). A LS basically represents a transaction’s identification (TID) and 

its corresponding entries (feature values), in which each entry (item) is represented as 

ColumIDs:LineID. Whereas IS takes one entry of the LS and transforms it into a key:value entry 

in which the key denotes the item (ColumIDs:LineID) and the value corresponds to the lines that 
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appeared with that item. More importantly, transforming between LS and IS can help the algorithm 

discover frequent itemsets, then efficiently generate and rank the rules before constructing the 

classification model.   

Column IDs: are the features / column numbers in the training dataset in which the item appeared.  

LineID: The data instance (row) number in which the itemset first occurred in the training dataset. 

When the input dataset is converted into LS and then to IS, all intermediate data retain the same 

data formats until the algorithm terminates, simplifying the rule discovery phase. We have 

followed this approach when discovering the rules of CARF as discussed in Section 3.5.2. 

Vertical Mining approach uses IS and LS to identify the frequent itemsets by simply intersecting 

the lines of the disjoint itemsets. The result of a single intersection between two frequent 1-itemsets 

will be the lines of the new candidate 2-itemset in which frequent 1-itemsets have occurred 

together in the dataset. By taking the size of the resulting lines of the new candidate 2-itemset we 

obtain its support value and decide whether it is frequent or not without having to go back to the 

dataset and compute its support as required in Horizontal Mining algorithms.  

Overall, the CAR mining approach has shown promising results in terms of performance for 

classification accuracy involving multiple applications including fraud detection, cybersecurity, 

the stock exchange, medical diagnosis, and others. However, a notable issue related to the rules 

produced by this approach is that they may share training instances since these rules utilize shared 

instances. To be precise, the support counts for multiple rules would include data instances that 

these rules have in common in the training dataset. Therefore, creating a rule redundancy that is 

obvious when models generated by CAR mining are compared with those of Decision Trees, 

Covering, and Rule Induction [3,11]. If overlapping of rules is reduced, then we believe that this 
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approach can be used to measure the significance of the features within these rules and thus chosen 

as a feature selection method. In Section 3.5, we show our proposal for the new feature selection 

method and how we reduced the issue of rules overlapping. 

3.5 The Proposed Class Association Rule Filter (CARF) Method  

CARF’s main steps are depicted in Figure 14. In the next sub-sections, we discuss these steps in 

more detail. 

3.5.1 Data Conversion 

The input data is normally represented by features and instances (columns and rows). To simplify 

the process of rule generation, each instance will be represented by a line number and will be 

linked with two integer values (the column ID in which it occurs and the first line in which it 

Mapping Procedure (convert dataset into LS) 

Input: A training dataset 

Output: A LS data formats  

1 for each distinct feature value in the training dataset 

2          generate the entry key <feature value, LineID>   

3 end 

4 for each cluster of entries with same feature value as key 

5          choose the lowest LineID to represent the feature value.   

6          generate <Feature value, LineID> 

7 End. 

Algorithm 3.1: Data Transformation Procedure 

 

 

 

Input: Dataset, minsupp and minconf thresholds  
Output: Sorted features with weights  

1. Invoke LS & IS Conversion procedure to covert the input dataset into a ColumnID:LineID data format 

2. Invoke the Rule_Induction and pruning procedures to compute frequent 1-itemset and candidate 1-rule 

3. Invoke Feature_Weight_Assignment procedure  

4. Invoke CARF’s procedure to determine the cut-off.   

 

  

 

 

                 

 

 

Figure 14: Steps in CARF method 
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appears). This process is demonstrated in Algorithm 3.1 above which needs to iterate once over 

the training dataset. Therefore, the CARF method transforms the training data into LS to prepare 

it for the training step in which the induction procedure to discover the rules is invoked. The LS 

will be transformed into IS, i.e. items in the LS format will have corresponding keys in the 

ColumIDs:LineIDs format, and corresponding values (Line:Class) in line format to automatically 

locate the relevant information, i.e. their frequencies, without having to scan the input dataset 

repeatedly.   

To illustrate how the CARF method uses LS and then transforms it into IS, consider the training 

dataset shown in Table 3.2A (horizontal data format) and its equivalent LS data format shown in  

Table 3.2B. In Table 3.2B [55], Itemset (F1=A1) was represented by 0:0 (the first column and line 

that F1=A1 has appeared) and itemset (F3=A1) was denoted 2:4. It should be noted that if the 

Table 3.2A: A Training Dataset 

Line# Features          
F1        F2        F3     Class 

0 A1 Y1 A2 C1 

1 A2 Y1 A2 C1 

2 A2 Y2 A2 C2 

3 A2 Y2 A2 C1 

4 A1 Y1 A1 C2 

5 A1 Y2 A1 C1 

6 A2 Y2 A1 C1 

7 A2 Y1 Y2 C1 

8 A1 Y1 A1 C3 

 

           Table 3.2B: LS Data Format  

LineID Features Line: 
Class 

0 (0)0  (1)0  (2)0 0:0 

1 (0)1 (1)0 (2)0 1:0 

2 (0)1 (1)2 (2)0 2:2 

3 (0)1 (1)2 (2)0 3:0 

4 (0)0 (1)0 (2)4 4:2 

5 (0)0 (1)2 (2)4    5:0 

6 (0)1 (1)2 (2)4 6:0 

7 (0)1 (1)0 (2)7 7:0 

8 (0)0 (1)0 (2)4 8:3 
 

         Table 3.2C: IS Data Format  

 Features Line: Class 

F1=A1 (0)0 0:0, 4:2, 5:2, 8:3 

F1=A2 (0)1 1:0, 2:2, 3:0, 6:0, 7:0 

F2=Y1 (1)0 0:0, 1:0, 4:2, 7:0, 8:3 

F2=Y2 (1)2 2:2, 3:0, 5:0, 6:0 

F3=A2 (2)0 0:0, 1:0, 2:2, 3:0 

F3=A1 (2)4 4:2, 5:0, 6:0, 8:3 

F3=Y2 (2)7 7:0 
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dataset is not a classification task (no class value), then A1 will be represented by 0:0. Table 3.2B 

depicts the LS representation allowing for the class label in which each row represents the 

occurrences of the itemset value. If we group the entries of the line in the IS (Table 3.2C), then the 

support value can be obtained taking the class into account. For instance, row 1 in Table 3.2C 

shows that itemset  (F1 =A1), i.e. 0(0),  has a support of 4 without considering the class information 

as it appears four times in the dataset, twice with class C1 and once with class labels C3 and C2, 

respectively. Using the IS data layout, we can easily use the class information and thus compute 

the support for the relevant items thus further reducing the search space of itemsets’ discovery and 

improve the mining approach.  

 

3.5.2 Rule Discovery and Weight Calculations  
 

Initially, the CARF method uses a rule induction procedure (according to Algorithm 3.2) to scan 

the training dataset to construct the LS data structure (as per Algorithm 3.1). The LS is then 

converted into an IS where keys are now items IDs (ColumnID: LineID) and values are lines where 

the items appeared in the training dataset. Using this IS data format, the frequent 1-itemset is now 

available i.e. a feature value plus a class value, by aggregating the entries that belong to the same 

item key to compute the support values. Any 1-itemset that has a frequency below the minsupp 

will be discarded at an early stage and not stored for later use (Line 8). The number of iterations 

to discover the frequent 1-itemset and the 1-rules is just one (as discussed earlier) since we only 

perform one data scan to perform the data transformation between a LS and an IS.  

CARF computes the best 1-rule (rules with one feature value in the antecedent and one class value 

in the consequent) in terms of confidence after removing all infrequent 1-itemsets. Any candidate 
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rule (frequent 1-itemset) with a confidence below the minconf will be removed. Once the best 1-

rule (rules having just 1 item in their antecedent) is found (Algorithm 2- Line 12), then 

a) Its weight is computed based on Equation (3.1) (Line 13) 

b) The 1-rule is recorded in the 1-rule set (Line 14) 

c) The training instances covered by this rule are erased from the IS data structure  (Line 15) 

d)  Repeats 1-15 of Algorithm (3.2) 

The process is iterative and ensures that  

a) Only the fittest 1-rule in terms of confidence is accounted for at each step of the rule 

induction process  

b) Once a 1-rule is derived, its training instances will not be counted for any possible 

remaining candidate 1-rule.  

The rule generation process guarantees that the produced 1-rules are evaluated against the 

training dataset and cover training instances. The outcome will be a set of rules of size 1 (1-

rules) derived from the training dataset and without data redundancy. The Rule Generation 

method at early stages prevents any possible participation of weak features (those that belong 

to weak candidate rules) from taking part in the rule-growing process by discarding them at 

preliminary stages. More importantly, the process considers statistically correlated features 

with the class (1-rules) to reduce the search space, and only those will be used to compute the 

features weights as we will discuss soon. We only induce 1-rules from non-overlapping 

instances of the input dataset ensuring high feature-class correlation and low feature-feature 

correlation. 
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In the above rule-growing procedure, we ensure that 1-rules are produced from different data 

instances to reduce the possibility of data overlapping which may cause the generation of 

redundant rules or overfitting. Since features are assigned weights based on their appearance 

within the derived rules and these rules are not redundant, feature-to-feature correlations (at least 

within shared instances) are minimized.  

The features that belong to the derived 1-rules will then be assigned weights based on a) The order 

in which the rule is produced; b) The number of data instances covered by the rules; c) The number 

of uncovered data instances before the rule was evaluated. The process of computing the weights 

Mapping Procedure (convert LS into IS) and Discovering Frequent Itemsets and 1-rules 

Input: A training dataset T 

Output: IS data format with frequent 1-itemset and candidate 1-rule 

1 𝐿𝑆 ←Map(T) 

2 for each entry in LS do 

3          generate <Feature value, LineID >    // set a key for the feature value   

4          Reduce (entries of same key): 

5          Support_count = number of LineIDs 

6          Item_confidence = (number of LineIDs with the largest class/ number of LineIDs) 

7          LineIDs_min = the smallest value of group of LineIDs 

8            If Support_count >= minsupp  

9                           begin 

10            generate <Feature value, LineIDs_min >  

11                                                  If confidence >= minconf 

12                Produce R 

13      Compute R’s weight  

14                                                  CAR_Set  ←  𝑅 : (< Feature value, LineIDS > <confidence, support_count>) 

15         Update <Feature values, LineIDs > by erasing R’s lines  

16        

17                     end 

18 end  

Algorithm 3.2: Proposed Frequent Itemset and 1-Rules 

 

 

 



www.manaraa.com

 

75 
 

for the available feature is performed by examining the 1-rule set. The function checks the feature 

within the rule, i.e. R, and assigns the feature a score using Equation (3.1) 

Weight ( Fi ) = freq ( R ) X UDV ( R )                                                      (3.1) 

 

Where  Fi is a feature, freq ( R ) is the number of instances covered by R, and UDV ( R ) denotes 

the number of uncovered data values in the training dataset before R was evaluated.   

For a rule such as R: A1⇾Class2, If (A1, Class2) appeared 15 times in a training dataset with 100 

total instances and R was the highest-ranked rule obtained, then the weight of feature A1 will be 

calculated (15x100 = 1500). The next candidate rule will then be evaluated on the remaining 85 

instances. For each 1-rule generated, the CARF automatically estimates the weight of the feature 

that occurred in the rule’s antecedent during the rule induction process, which is highly efficient. 

All information related to the set of 1-rules is available in the IS data structure (ColumnID; LineID; 

Line:Class) therefore, accessing the number of instances covered by the rule and the remaining 

uncovered instances is straightforward.  

Using the CARF method, not only rules with higher confidence will potentially contribute to 

computing the scores of the features, but also rules with actual data coverage. Hence, dissimilar 

features will potentially have high weights and thus a larger possibility of being retained by the 

user. 

 

3.5.3 The CARF’s Cut-off Procedure (MutInfoMethod) 
 

Most filtering methods use a naïve method to order the list of features retained based on the scores 

computed from large–small. These methods fail to answer questions such as, “How many features 

should be retained?”  
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We propose a new search procedure called MutInfMethod that will help answer the above 

question.  

Most Filtering methods suffer from not providing a clear cut-off point between useful and useless 

features. They tend to sort all available features from scores computed by the mathematical model, 

complicating the task for the user. For instance, if IG is applied on a dataset of 1000 features, it 

will estimate the scores using Entropy and then sort the features depending on their correlation to 

the target label (scores obtained). The task of which features to choose is left for the domain expert 

as the outcome given by IG does not provide any relevant information. The domain expert or the 

user has the freedom to decide if the top 10, 50, or 100 features should be chosen, which can cause 

important features to be overlooked and less informative features to be incorporated into the 

prediction models; this leads to poor classification performance.  

 A smart mechanism should be integrated into the existing Filtering methods to define the 

boundary between informative and less informative features independent from domain expert, data 

characteristics, and the mathematical models used. The mechanism should be robust so that it can 

be integrated with any Filtering method to guide the user by reducing the search space of the results 

offered. This would make the user’s examination process less complicated and more focused. We 

show in Section 3.5.3 our contribution on how to recommend N specific subset of features to the 

end-user by the CARF method.  

One possible way to build a new procedure to identify the cut-off between irrelevant and relevant 

features is by utilizing the Mutual Information concept. This was originally proposed to effectively 

determine the worthiness of the features in a dataset using features and class information, and 

latterly was used in Supervised Learning applications by the Decision Trees classification 

approach. 
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Mutual Information is a foundation concept based on the information theory research discipline in 

mathematics. It was initially investigated by Shannon (1948) [152] on how to represent data 

messages in a compact manner to efficiently use this in communication and signal processing 

applications concerning data transmission and data compression operations. A question such as 

“How informative is the message / data in terms of information?” is fundamental. Mutual 

Information tries to answer such a question by quantifying features to reveal how much 

information they can offer. In a typical classification task, Decision Tree algorithms such as C4.5 

[137] utilize IG to reveal how much information each feature supplies by measuring the Shannon 

entropy, i.e. uncertainty of the dataset before a split and after a split using that feature. The 

algorithm usually selects the feature that has the largest information minimizing the Shannon 

entropy so the data can be split into effective groups. 

The idea of using IG is quantified using events and probabilities. Information within an event can 

be calculated using the probability of that event; normally frequently occurring events require less 

information to represent them when compared with rare events since the latter is associated with a 

higher degree of uncertainty, i.e. entropy. Moreover, rare events, i.e. events with lower 

probabilities, require more information in bits. For instance, if we flipped a fair coin, the 

probability of that event will be 1/2 and the information obtained using H(A) will be 1.000 bit. 

Whereas the probability of rolling a number on a dice will be less than that of flipping a coin, i.e. 

1/6, and thus the expected amount of information would be larger, 3.222 bits since the probability 

is lower (more supervising event).  

In the context of classification of data for feature selection, features that are more correlated with 

the class label, i.e. have higher information gains, are able to split the dataset using the class 
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information since they offer higher average reduction in the Shannon entropy. For a discrete 

feature A whose values are {a1 , a2 , a3  , …..,  an},  the entropy can be estimated using Equation 3.2. 

Entropy(A)= ∑ −𝑃𝑎𝑖 𝑙𝑜𝑔2 𝑃𝑎𝑖
𝑛
𝑖=1                                            (3.2)                         

 Where the logarithm is the base-2 and P(ai) is the probability of the feature A occurring with class 

i in the training dataset. The reason for using logarithm base 2 is that information is measured in 

bits. 

In the proposed cut-off procedure, the set of all features along with the assigned scores by the 

CARF method are used as input. Since the weights may vary significantly, where high correlated 

features with the target class have larger weights than low correlated features, then the features 

should be ordered.  The cut-off procedure’s first step is to arrange features based on their assigned 

computed scores in descending order. Then it performs the following main steps to compute the 

cut-off score to isolate relevant features from the irrelevant features and offer only the relevant 

ones to the end-user. The following main steps are then performed to compute the cut-off score to 

isolate relevant features from the irrelevant features and offer only the relevant ones to the end-

user.  

1) The scores assigned to the features are normalized as the cut-off procedure can be 

integrated with any feature selection method. In performing normalization, the cut-off procedure 

ensures that each data observation is within a range of 0.0 to 1.0 and that all data observations are 

within the same scale. This indeed makes the data observations within a commons scale, reduces 

data distortion, and simplifies the process of computation regarding the cut-off value. This step is 

done using the below normalization equation 

                                     Normalize (A)= 
𝐴𝑤𝑒𝑖𝑔ℎ𝑡

∑ 𝐴𝑛−𝑤𝑒𝑖𝑔ℎ𝑡𝑠
𝑛
1
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2) The normalized weights associated with the features are then processed by the cut-off 

procedure to calculate how each of them provides information. In this way, each feature’s score is 

treated as a probability and denotes the correlation between that feature and the class label 

computed based on the mathematical model of the feature selection method used. For instance, in 

the CARF method, the scores of the features are computed using the rules discovered. The cut-off 

procedure uses the Mutual Information approach and calculates the entropy for each normalized 

feature’s score. In this way, each feature is now associated with the computed score as well as its 

corresponding degree of information in bits. This step is done using the below entropy equation 

                                           Entropy(A)= ∑ −𝑃𝑎𝑖 𝑙𝑜𝑔2 𝑃𝑎𝑖
𝑛
𝑖=1                                 

3) The degree of information in bits for all features is then totalled to provide one measure for 

all of the available features in respect to their degree of information. Then 2 to the power of the 

total is calculated to reflect the number combinations in bits of the computed so features based on 

their computed scores can be selected. By calculating the 2 power of the total of information for 

the available features’ scores, an indicative measure is obtained on how many features can be 

chosen by the end-user. This step is done by taking 2 to the power of the total entropy 

 

                                                                   Cut-off ←  2 E_F_total 

 

In the proposed search procedure (Algorithm 3.3), the features will be associated with the 

computed weights and sorted in descending order. We normalize the weights to ensure that no 

matter what range of values is used as input for the CARF’s cut-off procedure, these scores will 

be between 0–1 according to the normalization equation (Line 4). To elaborate on the 
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normalization issue, Filtering methods often produce different scores using various mathematical 

models. For example, CST produces scores above one, and GR derives scores between 0–1. We 

unify the scores, which can be done using normalization (Equation 3.3). Once the weights of the 

features are normalized, then we calculate the IG for each feature based on its normalized weight 

and for all features with weights above zero. The total of the IG values is then obtained for the 

available features and utilized to compute the cut-off value of the number of indicative features 

that the user should use. This is computed using the equation at line 11 in Algorithm 3.3. 

Normalize (A)= 
𝐴𝑤𝑒𝑖𝑔ℎ𝑡

∑ 𝐴𝑛−𝑤𝑒𝑖𝑔ℎ𝑡𝑠
𝑛
1

     (3.3) 

By using the new search procedure, features with a limited number of distinct values in the 

training dataset will be associated with higher weights due to the fact that they provide more 

information as they represent 1-rules with high data coverage yet non-overlapping instances.  

Thus, these features will probably have a higher chance of being retained by the CARF method, 

i.e. their position will be within the suggested cut-off value. Features that are common will have 

light weights and hence their position in the retained subset of features will be below the 

suggested cutoff 
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3.5.4 Example of CARF 
 

Revising the dataset of Table 3.1A, and assuming that the minimum support count = 2 and the 

minimum confidence = 75%, the algorithm presents the data in a vertical format by Line:Class and 

the ColumnID:LineID as shown in Table 3.3A to simplify the processes of locating frequent items 

in the dataset and generating the 1-rules. In Table 3.3A, the first column represents the line# and 

the class ID and the second column contains the features and their ColumnID:LineID 

representation. CARF algorithm coverts the data into IS as shown in Table 3.3B, which can be 

considered as a map in which items are keys and their corresponding lines with class labels are 

The New Cut-off Procedure  

Input: A set of features weight F with their corresponding weights  

Output: A cut-off   

 

1. N_F  ← ∅     //Empty set to hold the normalized weights   

2. N_F_total ← 0 

3. for each Fi in F do 

4.         N_F  ← Normalize (Fi)    // Normalize (Fi) using Equation (3.3) 

5.         N_F_total ←  N_F_total   + N_F 

6. end 

7. E_F  ← ∅     //Empty set to hold the entropy of each weight   

8. E_F_total ← 0 

9. for each N_Fi in N_F do 

10.         E_F  ← Entropy (N_Fi)  

11.         E_F_total ←  E_F_total   + E_F 

12. end 

13. Cut-off ←  2 E_F_total 

14. Return (Cut-off) 

 

Algorithm 3.3: The CARF’s Cut-off Procedure (MutInfMethod) 
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their values. This data representation makes the process of locating frequent 1-items and 

generating the 1-rules straightforward.  To be precise, and to find frequent 1-item (feature values 

with occurrences larger than or equal the minimum support threshold), CARF only groups the lines 

associated with each 1-item to compute its frequency. For instance, 1-item 0(0)= “Smoker=False” 

has appeared in Line:Class set {0:(0),4:(0),6:(0)}, which means it has occurred in lines (0,4,6) and 

with class ID = 0 (No). Based on such information, the support of this itemset is 3 and its 

confidence is 3/3 as it only occurs with class 0 (No).  

CARF discovers the possible frequent 1-itemset obtained after the initial scan of CARF, in which 

itemset “Smoker=False”, i.e. 0(0), as discussed earlier has only occurred with class “No”, so it has 

3/3 confidence (100%) and therefore it is the strongest 1-item. Therefore, 1-item 0(0) will be 

generated as a 1-rule, i.e. False ⇾ No, and all data instances connected with it is discarded from 

the dataset, i.e. Lines (0,4,6). The weight of this rule is also computed in the induction procedure  

as 3 × 8 = 24 and assigned to feature “Smoker”. Once the instances of the first 1-rule are discarded 

then CARF derives the possible remaining 1-item from the uncovered instances as shown in Table 

3.3C. In Table 3.3C, “Gender=Female” has only one occurrence with class “Yes” and “No” 

respectively, so it failed to pass the minimum frequency and therefore it is discarded. The best 1-

item remains from the uncovered training data is “Gender=Male” with class label “Yes” as it has 

100% confidence. This item is then converted into 1-rule, i.e. Male ⇾ Yes, and its data (lines 2,3,7) 

are removed from the training dataset as shown in Table 3.3B. After removing the second rule 

from the remaining uncovered data only two instances remain uncovered and no more frequent 1-

item can be discovered, so the rule discovery method terminates. 
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Using this rule discovery procedure by CARF there is no need to go back to the dataset to calculate 

support and confidence. More importantly, the process of computing both support and confidence 

for 1-rules is simple and efficient and does not require another phase for rule generation as in most 

existing CAR mining algorithms.  

  

 

 

 

Once the rules are generated then their weights are assigned to the feature as follows:  

Normalized Features Ranks: 

Feature  Weight 

------------------------------ 

Smoker 0.615 

Gender  0.385 

 

Table 3.3A:  LS format of Table 3.1A 

Line: Class Features 

0:(0) (0)0 (1)0 

1:(0) (0)1 (1)0 

2:(2) (0)1 (1)3 

3:(2) (0)1 (1)3 

4:(0) (0)0 (1)3 

5:(2) (0)1 (1)0 

6:(2) (0)0 (1)0 

7:(0) (0)1 (1)3 

 

Table 3.3B: IS format of Table 3.1A 
Feature  
Name ColumnID:LineID Line:Class 

FALSE 0(0) 0:(0),4:(0), 6:(0) 

FEMALE 1(0) 0:(0), 1:(0),5:(2),6:(0) 

TRUE 0(1) 
1:(0), 2:(2), 3:(2), 5:(2), 
7:(2) 

MALE 1(2) 2:(2), 3:(2), 4:(0),7:(2) 

 

Table 3.3C: IS format of Table 3.1A 

Feature  ColumnID:LineID Line:Class 

FEMALE 1(0)  1:(0),5:(2) 

TRUE 0(1) 
1:(0), 2:(2), 3:(2), 5:(2), 
7:(2) 

MALE 1(2) 2:(2), 3:(2), 7:(2) 
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The cut-off point using Shannon entropy is then calculated using its designated mathematical 

formula to recommend two features to the end user. This example, if limited, demonstrates how 

the filtering method works. 

 

3.6 Chapter Summary 

In this chapter we proposed a new Filtering method based on inducing simple rules from the 

classification datasets called CARF and a new search method that helps the user identify how many 

features to retain called MutInfoMethod. The CARF method learns rules with 2-item in the dataset 

and from these computes weights that are intelligently assigned to the features in the dataset. The 

transformation of data format from LS to IS during the rule discovery process makes this a simple 

and efficient approach. The distinguishing characteristic of the CARF method is that it erases 

redundant rules as early as possible; this has ensured that rules generated are not redundant. We 

think that will be advantageous as fewer features will be retained, making the process more 

efficient. We also investigated a vital issue in feature selection—reducing the time for checking 

the results of Filtering methods—and have proposed MutIfMethod, an automatically generated 

cut-off threshold procedure to differentiate between relevant and irrelevant features. This new 

cutoff procedure suggests the number of features to be chosen by the end-user without the results 

having to be manually checked. In the next chapter, we show the implementation of CARF and 

MutInf Methods in Java and their integration in the Weka open source machine learning platform. 

More importantly, we reveal the true perfromance of CARF on a large number of real datasets and 

compare its perofrmance with other known filtering methods using machine learning algorithms. 
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Chapter Four  

4. Implementation and Experimental Analysis   

4.1 Introduction 

The proposed feature selection method, i.e. Class Association Rule Filter (CARF), was 

implemented in the Java platform so it can be integrated easily within the Waikato Environment 

for Knowledge Analysis (Weka) data mining tool [53,156]. The reasons for choosing the Weka 

data mining tool as a primary environment for running CARF are fourfold: 

1) Weka consists of a large number of feature selection methods and learning algorithms 

therefore the experiments can run without having to re-code the methods utilized in the 

experiments  

2) Weka is an open-source tool, and no cost is incurred when running the experiments  

3) Familiarity of the Java programming language makes it easier and faster to design, 

implement, test, and integrate the new source code of CARF and the new mutual 

information search method within Weka’s feature selection package 

4) Several other machine learning tools can be accessed through Weka such as R and Deep 

learning 4j. 

In this chapter, the implementation, testing, and validation details of CARF are discussed. We 

examine the datasets, experimental settings, methods, and evaluation metrics used in the 

experiments, and present results analysis. We initially describe Weka’s environment and structure, 

then highlight CARF’s threshold setting and user interface (UI). The data and results analysis of 

CARF and other feature selection methods are presented in detail according to various evaluation 

metrics including, but not limited to, recall, precision, and accuracy. 
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4.2 Testing Environment  

CARF is coded in Java and implemented within the Weka environment, which is available free to 

developers, researchers, and students for contribution. Weka consists of a large number of data 

mining and machine learning packages related to correlation analysis, regression, classification, 

clustering, association rule, feature selection, data visualization, discretization, and other tasks. 

The tool was initially developed at the University of Waikato in Hamilton, New Zealand and 

multiple versions have subsequently emerged; currently Weka 3.8 is the version that is mainly used 

for testing while Weka 3.9 can be used for the development of new intelligent learning algorithms 

such as ours. We have used the development version of Weka to integrate CARF Java source code.  

Figure 15 depicts Weka’s main modules including ‘Explorer’, ‘Experimenter’, ‘KnowledgeFlow’, 

‘Workbench’, and ‘Simple CLI’. The ‘Explorer’ module provides users with an easy-to-interact 

UI to perform various data pre-processing and learning tasks. It contains six major tab pages: 

‘Preprocess’, ‘Classify’, ‘Cluster’, ‘Associate’, ‘Select Attributes’ and ‘Visualize’ for data pre-

processing (missing values treatment, data normalization, data discretization, attribute type 

conversion, etc.), classification (decision tree, probabilistic, statistical, etc.), clustering 

(hierarchical, partitioning, overlapping, etc.), association rule, feature selection (filters, wrapper) 

and visualization (graphs, trees)  respectively (See Figure 16 for the ‘Explorer’ tab options). The 

‘Knowledge Flow’ module can be used for the same purpose as ‘Explorer’, but in a 2-dimensional 

view. Unlike the ‘Explorer’, which is used for single algorithm applications, the ‘Experimenter’ is 

used to design and run multiple experiments in parallel thus offering a robust way to deal with 

large experiments. The ‘Simple CLI’ module provides an editor interface that users can interact 

with to invoke Weka’s functions directly using Java commands. Lastly, the ‘Workbench’ module 
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enables access to all modules within a single interface in Weka, for instance, users can use 

‘Explorer’ and ‘Experimenter’ modules at the same time. 

 

Weka archives learning and data pre-processing resources such as source codes, compiled codes, 

library files, and meta data, i.e. description files, inside packages. The packages are mainly saved 

in WEKA_HOME, which can be amended by the developer. In WEKA_HOME, there are 

directories including packages, props, systemDialogs and repCache. When a developer or a 

contributor writes a new package and wants to share it with other contributors in the Weka 

community, then the contributor may contact the Weka administrator and provide the description 

file along with the source code for testing. Once the code of the new package is verified, it will be 

compiled by the administrator and archived in Weka’s repository to allow users to access it from 

the Weka’s ‘Package Manager’. This process can take a long time until the new package can 

become part of Weka’s central repository. The developer is liable for hosting the new package’s 

archive. There is an alternative way to make the new package source code available to the 

 

Figure 15: Weka Landing Page 
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community, in an unofficial manner, by making the new package/code available online—

advertising is the responsibility of the contributor. 

To utilize certain methods related to data processing in Weka, users can install the method via 

Weka’s ‘Package Manager’. Methods are organized in Weka based on certain characteristics. For 

example, classification algorithms are grouped in Weka’s ‘Explorer’ based on the output format 

they offer and the learning scheme they adopt such as trees, rules, and probabilities, among others. 

Conversely, clustering algorithms are presented based on their names which is also the case for 

feature selection methods.  

4.3 CARF UI and Mutual Information Search Method Implementation    

Since the CARF feature selection method and the mutual information search method have been 

integrated into the Weka environment, then datasets in comma-separated format (CSV) and text 

format (ARFF), are accepted. The proposed search method which works with CARF, i.e. 

MutInfoMethod is independent from CARF and can be utilized by any other filter-based feature 

selection methods. The MutInfoMethod method when attached with any filter offers a cut-off value 

as well as recommending which features should be selected by the end-user. CARF ensures to 

produce scores linked with the available features and computed using 1-rules derived during the 
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learning step. Based on Figure 16, we selected CARF as the feature seletion method within the 

‘Attribute Evaluator’ and MutInfoMethod as a search method. 

The CARF package contains the necessary source codes, the proposed feature selection and  

 

the search methods are compiled and then archived in Weka’s home directory. The implementation 

version of the MutInfoMethod search method is embedded within the feature selection UI, i.e. 

‘Attributes Selection’ and can be seen within Weka’s ‘Explorer’ module. This tab page contains 

 

 
 

 
Figure 16: The 'Explorer' Tab Options when CARF is Selected 
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the implementation versions of wrapper and filter methods in Weka such as Symmetrical 

Uncertainty, Information Gain, Chi-Square testing, Gain Ratio, Fisher score, and many others. 

Furthermore, there are search methods implemented inside the ‘Attributes Selection’ UI such as 

the ‘Ranker’, and others. 

We have integrated CARF within Weka modules including ‘Explorer’, ‘Experimenter’, 

‘Command PLI’, etc. When using the ‘Explorer’ module, the user can access CARF from the 

‘Select Attributes’ tab page and ‘Attribute Evaluator’ (See Figure 17). The user must then choose 

MutInfoMethod as the search method. By doing so, the proposed search method will be the metric 

to decide the number of suggested features when CARF is applied on any given dataset. Therefore, 

when in Weka 3.8 the user should always amend the default search method from ‘Ranker’ into 

‘MutInfoMethod to ensure that the cut-off threshold, which separates influential features from 

those that are non-influential, is automatically calculated by CARF. 

 

 

 

 
 

 
 

Figure 17: CARF in the Sample of Weka's Feature Selection Methods 
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Simple customized UIs are designed and implemented as shown in Figures 4.4a and 4.4b for CARF 

and MutInfoMethod to enable users to set the minimum support and the minimum confidence 

thresholds. In the current CARF implementation, we use the default values for the minimum 

support and the minimum confidence of 2% and 40% respectively based on warming up 

experiments and previous research works discussed earlier in Chapter Three. The minimum 

support value is utilized as pre-pruning to filter out as early as possible any attribute value that has 

low frequency in the training dataset during the process of growing the rule. Therefore, only high 

frequency attribute values can be used in building rules; all attribute values with inadequate 

frequencies (frequencies lower than the minimum support thresholds) are discarded by CARF. 

Equally, the minimum confidence threshold plays a significant role in deciding which derived rules 

participate in the process of computing features scores, and which rules are removed early. The 

correlation between the attribute values and the class labels is evaluated when discarding rules 

below the minimum confidence thresholds thus ensuring that highly correlated rules remain for 

the computation of features scores.   

4.3.1 Demonstrated Example  
 

Figure 18 shows the UI of CARF, in which the minimum support and the minimum confidence 

values are set to 2% and 40% respectively, and Figure 19a depicts the results obtained by CARF 

when applied against the ‘Anneal’ dataset [94]. The ‘Anneal’ dataset is a multi-class dataset that 

consists of 38 features excluding the class label and contains 898 data instances and 6 possible 

class values. When employing the MutInfoMethod search method, CARF was able to reduce the 

dimensionality of the ‘Anneal’ dataset significantly by ignoring 33 features and keeping 5 features 

only as apparent in Figure 19a. We ran the Bayesian Network (Bayes Net) classification algorithm 

[20] on the subsets of features recommended by the CARF method and the derived model showed 
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95.10% predictive power. We repeated the same experiment on the ‘Anneal dataset’ by coupling 

the MutInfoMethod search method with Component Analysis (PCA) and Chi-Square testing 

feature selection methods [98,129] and their results are shown in Figures 19b and 19c, respectively. 

PCA and CST methods derived 30 and 17 subsets of features from the ‘Anneal’ dataset, 

respectively. When the Bayes Net classification algorithm processed the two subsets of features 

chosen by the PCA and CST testing method, the models generated have 94.87% and 96.21% 

respectively. This experiment, if partial, reveals that, the proposed feature selection and search 

methods not only substantially reduce the search space of features, but also this has little impact 

on the predictive power performance of the models derived by classification algorithms. More 

experiments’ results, and analysis are given in Section 4.6. 

 

 

 

 

Figure 18: CARF UI 
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Selected features: 

 0.5232   33 thick 

0.1968    5 hardness 

 0.0913    1 family 

 0.0611    3 steel 

 0.046    12 surface-quality 
 

Figure 19a: Set of Ranked Features Produced by CARF from the ‘Anneal’ Dataset 

 
 
 

 

 

 

 
 

Ranked features: 

937.8061    1 family 

905.7163    9 strength 

866.7645    5 hardness 

618.1328   33 thick 

582.4798    3 steel 

530.4829   12 surface-quality 

385.0935    8 formability 

384.9498   25 ferro 

332.0928   20 chrom 

274.4497    7 condition 

260.141    10 non-ageing 

256.7951   34 width 

227.1319    6 temper_rolling 

222.9967   24 exptl 

144.0954   27 blue/bright/varn/clean 

 87.503    21 phos 

 83.376    13 enamelability 
 

Figure 19b: Set of Ranked Features Produced by CST from the 'Anneal' Dataset 
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4.4 Performance Measures used for Testing  

All experiments will be run using the 10-fold cross-validation data resampling method in the Weka 

environment [177]. Hence the models produced by the classification algorithms are tested on 

different samples of the data ten times to produce the performance measures so users can decide 

to accept or reject models. Initially, the input dataset is split into ten partitions where the 

classification algorithm trains on nine partitions to generate the model, and the generated model is 

tested in terms of predictive power on the remaining partition. The process is repeated 10 times 

and error rate/classification accuracy computed at each time is averaged and provided to the end-

user. Cross-validation resampling is used commonly in the machine learning community when 

evaluating models derived by classification algorithms since it often generates less biased results 

when compared with other testing methods [177]. The ten-fold cross validation method’s steps are 

briefly summarized below: 

1. Randomly shuffle the training dataset 

Figure 19c: Set of Ranked Features Produced by PCA from the 'Anneal' Dataset 

Ranked features: 
 0.901   1 -0.343condition=?+0.342condition=S-0.31formability=?+0.279formability=2-0.196temper_rolling=T... 
 0.83     2 -0.396family=TN+0.365family=?-0.312non-ageing=N-0.277formability=3-0.262ferro=Y... 
 0.77     3 0.331steel=A+0.294hardness-0.292surface-quality=?+0.265surface-finish=?-0.265surface-finish=P... 
 0.713   4 0.307surface-finish=?-0.307surface-finish=P-0.279blue/bright/varn/clean=B+0.27blue/bright/varn/clean=?-0.242strength 
 0.664    5 0.456enamelability=?-0.456steel=V-0.358enamelability=2-0.278enamelability=1-0.234bw/me=?... 
 0.621    6 -0.404formability=1-0.376steel=?-0.342condition=A-0.242surface-quality=G+0.241steel=A... 
 0.58     7 -0.332bw/me=B-0.318packing=?+0.316bw/me=?+0.313surface-quality=E+0.304packing=3... 
 0.546    8 -0.484oil=?+0.365oil=N+0.322oil=Y-0.207bw/me=B-0.195cbond=Y... 
 0.513    9 0.307steel=M+0.306strength-0.246steel=?-0.238bore=600+0.233bore=0... 
 0.483   10 -0.46packing=?+0.426packing=3+0.273surface-quality=D-0.249family=ZS-0.219surface-quality=E... 
 0.455   11 0.3  family=ZS+0.286bore=0-0.27bore=600+0.24 carbon-0.228steel=W... 
 0.429   12 -0.298packing=?+0.296oil=Y+0.291packing=3+0.258len+0.254bf=Y... 
 0.404   13 -0.51surface-quality=F-0.427bf=Y+0.299steel=R+0.212formability=3+0.211surface-quality=D... 
 0.38    14 0.376formability=5-0.299temper_rolling=T+0.293surface-quality=D+0.238family=ZS+0.237steel=M... 
 0.356 150.496blue/bright/varn/clean=V+0.387steel=S+0.307blue/bright/varn/clean=C-0.275blue/bright/varn/clean=?-0.215surface-quality 
 0.335   16 -0.322surface-quality=D+0.294oil=Y+0.288cbond=Y-0.239blue/bright/varn/clean=V+0.22 steel=K... 
 0.315   17 -0.362blue/bright/varn/clean=C-0.341bt=Y+0.326steel=W-0.318steel=M+0.254steel=S... 
 0.296   18 0.488steel=W+0.343blue/bright/varn/clean=C-0.32bt=Y-0.277steel=S-0.271steel=M... 
 0.279   19 -0.302cbond=Y-0.302blue/bright/varn/clean=C-0.273len-0.271bt=Y+0.258bc=Y... 
 0.263   20 -0.479bc=Y+0.381exptl=Y-0.356packing=2-0.264ferro=Y-0.234bore=500... 
 0.246   21 0.571chrom=C-0.428ferro=Y+0.407packing=2+0.277exptl=Y-0.2lustre=Y... 
 0.23    22 -0.545packing=2-0.418exptl=Y+0.379chrom=C+0.311bore=500-0.279ferro=Y... 
 0.214   23 -0.77phos=P+0.332ferro=Y-0.266enamelability=1-0.243width+0.206enamelability=2... 
 0.198   24 -0.732enamelability=1+0.571enamelability=2+0.301phos=P+0.119bc=Y-0.113ferro=Y... 
 0.183   25 0.485bore=500+0.484exptl=Y-0.261chrom=C-0.228formability=5+0.192formability=3... 
 0.168   26 0.723bc=Y-0.331bore=500+0.244bore=600-0.182packing=2+0.181cbond=Y... 
 0.154   27 0.55 width-0.313oil=N-0.286phos=P+0.279lustre=Y-0.262cbond=Y... 
 0.141   28 0.381lustre=Y+0.299bore=500+0.287len-0.28cbond=Y-0.257steel=W... 
 0.128   29 0.451oil=N+0.397lustre=Y-0.393blue/bright/varn/clean=C+0.307width+0.274cbond=Y... 
 0.115   30 0.458lustre=Y-0.292width+0.257surface-quality=E+0.238len+0.227surface-quality=D... 
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2. Partition the training dataset into 10 parts with stratification (ensuring all class values appear in 

each part) 

3. For each part: 

• Choose one part as testing dataset (hold out part) 

• Use the remaining nine parts for training the model 

• Evaluate the derived model’s hold out part 

• Produce error rate / classification accuracy 

4. Repeat the process (steps 1-3) 10 times 

5. Aggregate the results and produce the average error rate / classification accuracy 

To evaluate the effectiveness of the subset of features chosen by CARF, we adopted various 

performance measures related to supervised learning tasks, i.e. classification benchmarks. These 

methods include classification accuracy, precision, and recall (see Equations 4.1–4.3), which have 

been derived from the contingency table shown in Figure 22. The reason for choosing these 

evaluation measures because the effectiveness of the subsets of features will be tested using 

classification algorithms. The subsets of features of the considered feature selection methods, 

including ours, are chosen from binary and multi-class types of datasets as discussed in Section 

4.6. Table 4.1 depicts the likely outcomes for a model’s binary classification problem using the 

model’s predicted value vs. the class true value [177]. In particular, the below four scores are 

calculated and visualized:  

True Positive (TP) = data instances that are truly positive and were accurately predicted as positive 

by the classification algorithm. 
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True Negative (TN) = data instances that are truly negative and were accurately predicted as 

negative by the classification algorithm. 

False Negative (FN) = data instances that are truly positive but were incorrectly predicted as 

negative by the classification algorithm. 

False Positive (FP) = data instances that are truly negative but were incorrectly predicted as 

positive by the classification algorithm. 

   

Figure 20: Contingency Table Showing Possible Outcome of a Binary Classification Problem  

 

The accuracy, precision, and recall measures are described below.    

Accuracy  =
TP+TN

TP+TN+FP+FN
        (4.1) 

Precision   =
TP

TP+FP
        (4.2) 

Recall =  True Positive Rate (TPR) =
TP

TP+FN
  (4.3) 

Classification accuracy (Equation 4.1) is the most common evaluation measure in machine 

learning and represents the proportion of correct classifications from the size of the test dataset—

in other words, how many times the test instances have been predicted correctly by the machine 

learning algorithm. However, in certain datasets, such as when the class labels’ frequency varies 
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significantly (imbalanced dataset), classification accuracy may no longer be considered as a 

primary evaluation measure.  

Other measures, including precision (Equation 4.2), and recall (Equation 4.3), can be used in 

addition to classification accuracy. Precision and recall are considered as quality and quantity 

metrics, respectively. Good precision in information retrieval is indicated when a query result has 

more relevant than irrelevant results; when the query results are mainly relevant, this indicates 

high recall. The same analogy can be seen in classification tasks within machine learning; precision 

counts the number of instances that are predicted to be positive and truly linked with the positive 

class, whereas recall counts the number of instances that are predicted to be positive from all truly 

positive data instances in the test dataset. Precision quantifies the number of positive class 

predictions that actually belong to the positive class. In other words, when the FPs are minimized, 

this maximizes precision, and when the FNs are minimized, this maximizes recall.   

 

4.5 Settings, Methods Used and Data 

All feature selection and classification experiments have been conducted in the Weka 3.8 

environment where CARF and the MulInfMethod search methods’ source codes have been 

integrated. We have contrasted CARF with three popular feature selection methods of type 

filtering, namely GR, CST, and ReliefF. These methods have been selected since they exhibit 

different schemes in the way they select features from classification benchmarks. CST evaluates 

the correlations between the feature and the target class label using expected and observed 

frequencies as per Equation 4.4. GR treats features equally and does not favor features with more 

possible values by dividing the information gained from the data by the entropy of the feature as 

shown in Equations 4.5–4.6. Lastly, ReliefF computes the merit of the feature by calculating the 
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difference of its nearest instance pairs and with respect to their class labels according to Equation 

4.7. A hit is considered to be when the difference in the feature value and a neighboring instance 

pair with the same class label is seen, and the feature score gets reduced. A miss is considered to 

be when there is a difference between a feature and a neighboring instance pair with different labels 

and the feature score rises. 

 CST/𝑋2 =
(𝑂−𝐸)2

𝐸
         (4.4) 

Where  

O denotes the Observed Frequency, and E denotes the Expected Frequency, for the considered 

features’ values.  

GR = 
𝐼𝐺

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐼𝑛𝑓𝑜(𝑆,𝐴)
       (4.5) 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝐼𝑛𝑓𝑜(𝑆, 𝐴)=− ∑
𝑆𝑖

𝑆
𝑙𝑜𝑔2 

𝑆𝑖

𝑆
     (4.6) 

Where IG is the information gain and IntrinsicInfo is the Entropy of attribute ‘A’ over a set of 

examples ‘S’. 

ReliefF = W[A] = W[A] -  
(𝑑𝑖𝑓𝑓

A,𝑅𝑖,𝐻

m
)

 (𝑑𝑖𝑓𝑓
A,𝑅𝑖,𝑀

m
)
         (4.7) 

Where, 

W[A]= feature weights 

A = number of features 

m = number of random training instances from ‘n’ number of training instances used to update 

‘W’ 
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𝑅𝑖 = randomly selected target instance 

H/M = nearest hit and nearest miss 

To assess the quality of the feature sets selected by the feature selection methods we have utilized 

two different classification algorithms namely decision tree (C4.5) and probabilistic (Bayes Net) 

[137,20]. These algorithms have been selected due to their applicability in various classification 

domains and the different learning methodologies they use in constructing the classification model. 

Specifically, the Bayes Net algorithm computes the probabilities of each possible class from a 

directed acyclic graph built by the algorithm to assign the largest probability class to the test data 

instance. The algorithm utilizes the chain rule by searching the graph to build a Bayes network 

using the conditional probabilities of the possible feature values in the test data and the information 

within the training dataset. The graph consists of nodes with each denoting a feature and arcs that 

represent how the node and its parents are correlated. The C4.5 constructs a tree structure as a 

classification model using different data quantification splitting metrics such as Shannon entropy 

[152]. The algorithm chooses the feature with the highest information gain as a root, splits the data 

using that feature’s values, and repeats the same process until each path in the tree ends up in a 

leaf. Once this occurs, C4.5 then trims the tree using error-based estimation methods. 

The default parameter setting of the Bayes Net and C4.5 algorithms within the Weka environment 

have been used. Specifically, the C4.5 algorithm used subtree-raising pruning and a confidence 

factor of 0.25 and set the minimum description length principle (MDL) to true. For Bayes Net, the 

kernel estimator used was “SimpleEstimator” with alpha=0.5 for calculating the conditional 

probabilities during building the model. The search method adopted by Bayes Net was hill 

climbing. For the proposed feature selection method, the minimum support and the minimum 

confidence were set to 2% and 40% respectively, following warming up experimentation and 
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according to previous research works in CAR mining, i.e. [166,167]. Lastly, all the experimental 

runs have been executed on a personal computer with a processor speed of 2.7 GHz and 8 GB 

Random Access Memory (RAM).   

 

4.6 Results Analysis  

 

4.6.1 Dimensionality Reduction Results  
 

A total of 15 different datasets from the Kaggle and UCI data repositories [71,94] have been chosen 

to evaluate the goodness of the subsets of features chosen by CARF when contrasted with other 

common feature selection methods. Table 4.2 displays the datasets used in the experiments along 

with the characteristics of these datasets including, but not limited to, the dataset size in terms of 

the number of data instances, the number of features, whether the dataset is binary or multi-class, 

the class distribution variable, and primarily the feature selection results in terms of the number of 

retained features per dataset. The choice of selecting the classification datasets was made for 

several reasons:  

1. They are publicly available for free  

2. They have been used by previous researchers in machine learning for analysis 

3. They represent different classification applications, for example medical diagnosis, 

cyber security, finance, engineering, and others  

4. Some of the datasets contain missing values and others do not 

5. They have different size in terms of number of data instances  

6. The dimensionality varies significantly; for instance, ‘Cleve’ contains 12 features 

whereas ‘PD’ contains 755 features. 
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All continuous attributes within the selected datasets have been implicitly discretized during the 

feature assessment process. Moreover, any feature in the chosen datasets with missing values has 

been treated implicitly using the feature selection methods by ‘ReplaceMissingValue’ filter in 

Weka.  

The last four columns of Table 4.2 show the dimensionality reduction results after applying the 

considered feature selection methods, including CARF, on the 15 datasets. It is apparent from the 

results derived, i.e. features’ subsets, by the considered feature selection methods that CARF when 

employing the MutInfoMethod search method produced fewer features and for all the considered 

datasets when contrasted with the GR, ReliefF, and CST methods. For example, for the ‘Cleve’ 

low dimensional dataset (12 features), the GR, ReliefF, and CST methods derived 9, 10, and 9 

subsets of features respectively, whereas CARF only retained 5 features reducing the search space 

by around 60%. More importantly, and for a large dimensional dataset such as ‘Arrhythmia’ which 

consists of 280 features, only 7 features were retained by CARF and this is substantially less than 

the subsets of features selected by the GR, ReliefF, and CST methods which are 118, 162, and 86 

respectively. 

 

Based on the results sets produced by the feature selection methods, CARF consistently selected 

fewer features regardless of whether the dataset was binary, multi-class, or even imbalanced. These 

results clearly show that CARF was not sensitive to data imbalance or to the type of the application 

domains to which the dataset belongs. The proposed feature selection method was not sensitive to 

noise such as missing values within the dataset or to the dimensionality level, e.g. the number of 

features. In fact, CARF significantly minimized the search space for the large dimensional datasets 

we consider including ‘Arrhythmia’, ‘ECG Heath Categorization’, ‘Email Spam’ and ‘PD’. CARF 
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was able to satisfy the user with just 7, 17, 8, and 13 from the ‘Arrhythmia’, ‘ECG Heath 

Categorization’, ‘Email Spam’, and ‘PD’ datasets, respectively.  

 

Table 4.2: Characteristics of the Datasets and the Subsets of Features Selected by Feature Selection Methods    

 

Dataset 
Number of 

Instances 

Number of 

Features 
Missing Values Class Distribution 

Number of features selected 

GR ReliefF CST CARF 

Anneal 898 39 Yes 8:99:684:0:67:40 22 16 17 5 

Arrhythmia 452 280 Yes 245:44:15:15:13:25:3:2:9:50:0:0:0:4:5:
22 

118 162 86 17 

Cleved 303 12 Yes 138:165 9 10 9 5 

Colic 368 23 Yes 232:136 11 12 12 5 

Credit-g 1000 21 No 700:300 12 14 11 3 

Cylinder-bands 540 40 Yes 228:312 19 20 10 12 

Dermatology 366 35 Yes 112:61:72:49:52:20 29 27 30 6 

ECG Heartbeat Categorization 21892 188 No 18118:556:1448:162:1608 166 150 149 17 

Email Spam 5172 3002 No 3672:1500 1606 1217 1146 16 

Hepatitis 155 20 Yes 32:123 13 15 12 7 

Ionosphere 351 35 No 126:225 32 33 32 8 

Optdigits 5620 65 No 554:571:572:568:558:558:566:554:56
2 

56 42 50 13 

Parkinson's Disease (PD) 756 755 No 192:564 457 444 446 12 

Sonar 208 61 No 97:111 20 46 20 9 

Waveform 5000 41 No 1692:1653:1653 18 20 18 7 

Wine 178 14 No 59:71:48 13 12 12 3 

 

 

 

Figure 4.7 shows the minimization of the search space per dataset by the CARF feature selection 

method. The results have been calculated using the percentage difference in the selected features 

of the other considered feature selection methods and CARF. In all datasets the search space 

reduction difference is apparent as CARF continuously minimized the search space more than GR, 

ReliefF, and CST. The reduction of the search space by CARF was at least 41.67% in the case of 

the ‘Hepatitis’ dataset when compared with the CST method, and 99% in the case of high 

dimensional dataset like ‘Email Spam’. The range of the search space reduction when adopting 
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CARF versus the other feature selection methods on the 15 datasets is between 41% and 99%. This 

shows that CARF only selects highly influential features with the least feature-to-feature 

correlations and therefore is able to reduce the search space substantially. 

 

The way that CARF  considers one item only per rule during the process of building the rules 

(which in turn is utilized for the features score calculation), has contributed to fewer features being 

retained. CARF favors the best attribute value associated with the rule during the induction process 

and discards all others ensuring that significant attribute values that have correlation with the class 

are those used for rule induction. More importantly, CARF ensures that once each rule is induced 

then its data instances are discarded, thus for the induced rules there is no chance of data 

overlapping. This process reduces feature-to-feature correlation and therefore minimizes results 

redundancy in terms of features retained during the feature assessment process.  

 

In general, CARF has been effective in minimizing data dimensionality when compared to other 

feature selection methods such as GR, ReliefF, and CST. The new search methods, i.e. 

MutInfoMethod, when integrated with these feature selection methods, showed good performance 
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identifying cut-off values for users, including novices, to assess even if they have little knowledge 

about the dataset characteristics. In the next section we evaluate the performance of the retained 

features by the considered feature selection methods, including CARF, and reveal the goodness of 

the cut-offs suggested by the mutual information search method. 

 

Overall, the CARF feature selection method was consistently able to offer much smaller subsets 

of features from the 15 datasets—this is highly beneficial for decision makers and for users to 

explain a dataset in a much more concise manner. In addition, offering fewer features empowers 

users as they will be able to control and understand them more easily than a large number of 

features as offered by the current feature selection methods. The intelligent cut-offs proposed by 

the MutInfoMethod search methods showed a significant decrease in the number of features that 
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Figure 21: Search Space Reduction of CARF Compared with Other Feature Selection Methods 
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can be retained by the end-user. In the next subsection we show the predictive power obtained by 

ML techniques when processing the retained features subsets. 

 

4.6.2 Predictive Accuracy, Precision, and Recall Results Analysis 

 

We evaluate the quality of the subsets generated by CARF, GR, ReliefF, and CST feature selection 

methods by investigating classifiers generated against these subsets of features with two common 

classification algorithms, namely Bayes Net and C4.5. Table 4.3 shows the performance measure 

results of the classifiers produced by the Bayes Net algorithm against the subsets of features 

selected by CARF, GR, ReliefF, and CST from the 15 datasets and with respect to classification 

accuracy, recall, and precision. The last 5 columns of table 4.4 shows the dimensionality reduction 

for each method. You can see from the below result set that CARF significantly reduce the 

dimensionality without sacrificing the accuracy. 
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Table 4.3: Bayes Net Algorithm Results on the Considered Feature Selection Methods 

 

  Accuracy Recall Precision Number of Features Selected 

Dataset GR ReliefF CST CARF GR ReliefF CST CARF GR ReliefF CST CARF GR ReliefF CST CARF 

Anneal  95.88 94.77 96.21 94.99 95.90 94.80 96.20 95.00 96.80 96.20 97.00 95.30 22 16 17 5 

Arrhythmia  69.91 71.46 71.02 63.94 69.90 71.50 71.00 63.90 66.70 70.10 69.30 57.40 118 162 86 17 

Cleve 83.50 83.50 84.16 83.17 83.50 83.50 84.20 83.20 83.50 83.50 84.20 83.20 9 10 9 5 

Colic  82.61 81.79 82.07 82.88 82.60 81.80 82.10 82.90 82.70 81.80 82.10 82.70 11 12 12 5 

Credit-g  73.30 74.80 74.00 71.20 73.30 74.80 74.00 71.20 72.00 74.00 72.90 69.10 12 14 11 3 

Dermatology  98.09 98.09 97.81 89.07 98.10 98.10 97.80 89.10 98.10 98.10 97.90 90.10 29 27 30 6 

ECG 
Heartbeat 
Categorization  

62.39 62.03 62.03 67.43 62.40 62.00 62.00 67.40 86.10 86.10 86.10 85.10 166 150 149 17 

Email Spam 92.69 91.84 91.84 83.60 92.70 91.80 91.80 83.60 92.60 91.75 91.80 88.50 1606 1217 1146 16 

Hepatitis  83.23 83.87 83.87 83.23 83.20 83.90 83.90 83.20 84.50 85.40 84.90 82.20 13 15 12 7 

Ionosphere  89.74 89.46 89.46 90.88 89.70 89.50 89.50 90.90 89.70 89.40 89.40 90.80 32 33 32 8 

Optdigits  92.19 91.76 92.22 83.02 92.20 91.80 92.20 83.00 92.40 92.00 92.40 83.10 56 42 50 13 

Parkinson's 
Disease (PD)  

75.93 77.91 76.85 81.22 75.90 77.90 76.90 81.20 79.30 80.20 79.60 81.60 457 444 446 12 

Sonar  80.29 79.81 79.81 74.04 80.30 79.80 79.80 74.00 80.50 80.00 80.00 74.30 20 46 20 9 

Waveform  79.86 79.84 79.86 79.30 79.90 79.80 79.90 79.30 83.10 83.10 83.10 81.10 18 20 18 7 

Wine  98.88 98.31 98.31 94.94 98.90 98.30 98.30 94.90 98.90 98.40 98.40 95.00 13 12 12 3 

 

The predictive accuracy results show that Bayes Net was able to construct more predictive models 

from the small subsets of features selected by the proposed feature selection method on 4 out of 

the 15 datasets we consider. To be more specific, for the ‘Colic’, ‘ECG Heartbeat Categorization’, 

‘Ionosphere’, and ‘PD’ datasets, the Bayes Net algorithm was able to derive classifiers from 

CARF’s data subsets with0.27%, 1.09%, 0.82%; 5.04%, 5.40%, 5.39%; 1.14%, 1.42%, 1.42%; 

and 5.29%, 3.31%, 4.36% higher accuracies respectively than those derived by the same algorithm 

from the GR, ReliefF, and CST method subsets. These results, especially for high dimensional 

datasets such as ‘PD’ and ‘ECG Heartbeat Categorization’, are promising particularly when cutting 

down the search space significantly. CARF was able to reduce the number of features of ‘Colic’, 

‘ECG Heartbeat Categorization’,  ‘Ionosphere’, and ‘PD’ when coupled with the MutInfoMethod 

search method to 5, 17, 8, and 12 features, respectively. Conversely, GR, ReliefF, and CST reduced 
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the number of features from the same datasets to 11, 166, 32, 457; 12, 150, 32, 446; and 12, 149, 

32, 446; respectively. These results indeed reveal the goodness of the subsets of features offered 

by CARF and showed that in many cases not only the search space was minimized by CARF, but 

also the quality of the classifiers derived from these subsets are of high quality at least in terms of 

predictive accuracy, recall, and precision measures. Overall, the search space on these datasets has 

been reduced massively when CARF was applied compared to using the GR, ReliefF, and CST 

methods. 

  

In general, the performance results in regard to predictive accuracy showed consistency when 

Bayes Net algorithms processed the feature subsets of the considered feature selection methods on 

the 15 datasets. There was a drop of approximately 9% when Bayes Net processed the subsets of 

CARF from the ‘Dermatology’ dataset, and the same pattern was noticed in the C4.5 results (Table 

4.4). We investigated this case and noticed that the dataset is multi-class in nature (consists of 

more than two class labels) and contains primarily linear features and just one categorical feature. 

When compared to GR, ReliefF, and CST, CARF was able to reduce the search space of this 

dataset by 79.31%, 77.78%, and 80.00% respectively, identifying just 6 features out of 34 using 

the cut-off value suggested by the MutInfoMethod search method. Three of the 6 features 

identified by CARF are of high significance, i.e. ‘thinning_of_the_suprapapillary_epidermis’, 

‘band-like_infiltrate’, and ‘fibrosis_of_the_papillary_dermis’, and three of lowsignificance, i.e. 

‘disappearance_of_the_granular_layer’, ‘melanin_incontinence’, and 

‘perifollicular_parakeratosis’ as shown in Figure 24. Whereas the other feature selection methods 

retained 29, 27, and 30 features, respectively, many of which have low yet close scores. For this 

dataset, it seems that a large number of clinical features with little differences contribute minimally 
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to the diagnosis of ‘Erythemato-squamous’ disease in dermatology. Since this disease overlaps in 

many histopathological features, and CARF retains only non-overlapping features, then many of 

these overlapping attributes are not retained by the CARF method. Another probable reason could 

be associated with the progression of the disease and that features at one stage can be insignificant 

but later on can be significant, thus the longitudinal property may play a role in feature assessment.    

 

Table 4.4 shows the performance results of the C4.5 algorithm with respect to classification 

accuracy, recall, and precision against the subsets of features chosen by GR, Relief=F, CST, and 

CARF from the 15 datasets. Based on the predictive accuracy results of C4.5, this algorithm 

produced better performance when it processed CARF feature subsets on 6 out of the 15 datasets 

we consider, namely ‘Cleve’, ‘Credit-g’, ‘Hepatitis’, ‘Ionosphere’, ‘Waveform’, and ‘Wine’. For 

the remaining 9 datasets, C4.5 produced more accurate classifiers from one or more of the other 

features’ subsets selected by GR, ReliefF, or CST.  For the ‘Cleve’, ‘Credit-g’, ‘Hepatitis’, 

‘Ionosphere’, ‘Waveform’ and ‘Wine’ datasets, the C4.5 algorithm was able to generate classifiers 

from CARF’s data subsets with 1.65%, 0.67%, 1.66%; 0.20%, 0.30%, 0.30%; 1.94%, 0.00%, 

1.29%; 0.86%, 0.86%, 0.29%; 0.50%, 0.26%, 0.58%; and 1.69%, 1.69%, 1.69%)higher accuracies 

than those derived by the same algorithm from the GR, ReliefF, and CST methods respectively. 

 
Ranked features: 
 0.4521   22 thinning_of_the_suprapapillary_epidermis 
 0.2319   33 band-like_infiltrate 
 0.1242   15 fibrosis_of_the_papillary_dermis 
 0.0469   26 disappearance_of_the_granular_layer 
 0.0323   12 melanin_incontinence 
 0.0296   31 perifollicular_parakeratosis 
 
 

 
  

 

 

 

 Figure 22: Features Selected by CARF from the ‘Dermatology’ Dataset 
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The last 5 columns of table 4.4 shows the dimensionality reduction for each method. You can see 

from the below result set that CARF significantly reduce the dimensionality without sacrificing 

the accuracy. 

 

Table 4.4: The C4.5 Algorithm Results on the Considered Feature Selection Methods 

 

 Accuracy Recall Precision Number of Features Selected 

Dataset GR ReliefF CST CARF GR ReliefF CST CARF GR ReliefF CST CARF GR ReliefF CST CARF 

Anneal  98.10 98.66 98.10 96.10 98.10 98.70 98.10 96.10 98.10 98.70 98.10 96.20 22 16 17 5 

Arrhythmia  64.15 65.04 64.15 62.83 64.20 65.00 64.20 62.80 62.20 61.60 62.70 58.80 118 162 86 17 

Cleve 77.23 78.21 77.22 78.88 77.20 78.20 77.20 78.90 77.20 78.20 77.20 78.90 9 10 9 5 

Colic  85.86 85.59 85.59 83.97 85.90 85.60 85.60 84.00 86.00 85.80 85.80 83.80 11 12 12 5 

Credit-g  71.70 71.60 71.60 71.90 71.70 71.60 71.60 71.90 70.60 70.00 70.10 69.90 12 14 11 3 

Dermatology  94.71 93.71 94.26 86.89 93.70 93.70 94.30 86.90 93.70 93.70 94.20 87.90 29 27 30 6 

ECG 
Heartbeat 
Categorization  

94.85 94.89 94.91 93.90 94.90 94.90 94.90 93.90 94.60 94.70 94.70 93.50 166 150 149 17 

Email Spam   92.69 91.84 91.84 83.60 92.70 91.80 91.80 83.60 92.60 91.75 91.80 88.50 
160

6 
1217 1146 16 

Hepatitis  80.64 82.58 81.29 82.58 80.60 82.60 81.30 82.60 78.70 80.90 79.30 80.60 13 15 12 7 

Ionosphere  91.45 91.45 92.02 92.31 91.50 91.50 92.00 92.30 91.50 91.60 92.30 92.50 32 33 32 8 

Optdigits  90.69 90.46 90.60 84.29 90.70 90.50 90.60 84.30 90.70 90.50 90.60 84.20 56 42 50 13 

Parkinson's  
Disease (PD)  

83.33 82.93 82.93 82.14 83.30 82.90 82.90 82.10 83.20 83.20 82.90 81.30 457 444 446 12 

Sonar  74.04 73.55 76.92 72.12 74.00 73.60 76.90 72.10 74.00 73.50 76.90 72.20 20 46 20 9 

Waveform  76.32 76.56 76.24 76.82 76.30 76.60 76.20 76.80 76.30 76.60 76.20 76.80 18 20 18 7 

Wine  93.82 93.82 93.82 95.51 93.80 93.80 93.80 95.50 94.00 94.00 94.00 95.60 13 12 12 3 

 

 

Tables 4.3 and 4.4 show the recall and precision results produced by the C4.5 and Bayes Net 

algorithms from the subsets selected by the feature selection methods on the 15 datasets using the 

suggested cut-offs of the MutInfoMethod search method. To clarify, and for each dataset, the 

subsets of features based on the computed cut-offs were retained to be processed by C4.5 and 

Bayes Net to derive classifiers. The precision and recall results are consistent with the predictive 

accuracy results derived using both C4.5 and Bayes Net. To be specific, the won-tied-lost record 

of the C4.5 classifiers’ performance with respect to recall rates when processing the CARF-
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selected features sets are contrasted with those of GR, ReliefF, and CST, are 6-0-9, 5-1-9, and 6-

0-9 respectively. The won-tied-lost record remains unchanged for the precision results obtained 

by the same classification algorithm. Furthermore, the won-tied-lost records of the Bayes Net 

classifiers’ performance with respect to recall rates when processing the CARF selected features 

sets and contrasted with those of GR, ReliefF, and CST, are 5-1-9, 5-0-10 and 5-0-10 respectively. 

The won-tied-lost record remains unchanged for the precision results obtained by the same 

classification algorithm. 

 A series of one-sample t tests were performed to investigate whether the CARF’s accuracy, 

recall, and precision values differed form a calculated mean based on the sum of GR, ReliefF, 

CST, and CARF. On accuracy, CARF’s values are statistically significant at the 0.01 level on four 

datasets: Dermatology, ECG Heartbeat- Categorization, Email Spam, and Parkinson’s Disease. On 

two of the datasets, the increase in accuracy on CARF is statistically significant. Those are ECG 

Heartbeat- Categorization, and Parkinson’s Disease. On two of the datasets, the decrease in 

accuracy on CARF is statistically significant. Those include Dermatology, and Email Spam. On 

the remaining eleven datasets, the difference in accuracy in CARF did not significantly differ from 

the mean of all methods indicating a statistically insignificant difference.   

 Concerning Recall, CARF’s values are statistically different from the average of all 

methods on four datasets. On ECG Heartbeat- Categorization and Parkinson’s Disease, the 

increase on Recall associated with CARF is not due to chance. By the same token, Dermatology, 

and Email Spam Recall decreases observed on CARF in comparison to the mean of other methods 

are judged to be statistically significant. On the remaining eleven datasets, the mean difference 

between CARF, and the average of other methods are found to be statistically insignificant at the 

0.01 level.  
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  Considering the precision of the four methods, CARF performs better than the other 

methods on two datasets and underperforms on two datasets given the average of all methods as a 

reference metric. On ECG Heartbeat- Categorization and Parkinson’s Disease datasets, CARF 

values are statistically different from the mean of all methods recording a slight improvement not 

due to chance. Simultaneously, CARF precision values on Dermatology, and Email Spam are 

statistically different from the mean of all methods indicating that the decrease in precision is real, 

and sampling error or chance have little to do with it. On remaining eleven datasets, however, 

CARF values do not differ systematically from the mean of all methods, and the four methods are 

said to yield similar precision values. Table 4.5 shows the p-value statistical significance of CARF 

based on Table 4.3 Bayes Net algorithm accuracy, recall and precision results on all of the 15 

datasets 

Table 4.5: Statistical Significance of CARF based on Bayes Net algorithm results 

 

Datasets  Accuracy  Recall Precision 

Anneal  0.08 0.14 0.19 

Arrhythmia  0.13 0.19 0.21 

Cleve 0.11 0.14 0.18 

Colic  0.12 0.16 0.17 

Credit-g  0.09 0.14 0.17 

Dermatology  0.01 * 0.01* 0.01* 

ECG Heartbeat 
 Categorization  

0.01 * 0.01* 0.01* 

Email Spam  0.01*  0.01* 0.01* 

Hepatitis  0.14 0.17 0.12 

Ionosphere  0.11 0.13 0.15 

Optdigits  0.17 0.12 0.16 

Parkinson's 
 Disease (PD)  

0.01* 0.01* 0.01* 

Sonar  0.13 0.17 0.21 

Waveform  0.09 0.08 0.15 

Wine 0.13 0.18 0.21 

  

The differences in statistical significance among the datasets stem from many plausible sources. 

First, the nature of the datasets differs, and the measurement scales of features within each of them 

may have caused the increase or decrease in accuracy, recall, and precision. For instance, some 



www.manaraa.com

 

112 
 

datasets possess dependent variables with many values while others reflect binary measurements 

of outcomes. Further, in many datasets, one may find linear combinations of variables already 

included within such data. This may have caused some fluctuations in estimating the coefficients 

on accuracy, recall, and precision. In addition, many features within datasets consist of minimal 

variability. This limits the ability of statistical estimation to detect empirical associations causing 

biases in the calculation of accuracy, recall, and precision.  

 Another culprit causing differences between CARF, and other methods in terms of 

generating varying accuracy, recall, and precision is data imbalance. In many of the datasets, the 

properties of the domain cause a natural data imbalance due to the nature of occurrence of events 

on a variable or feature. Some events or values occur more frequently compared to others, and in 

turn influence the predictive modelling ability of statistical estimation. Moreover, sampling error, 

and measurements biases account for some of the differences in values among the four methods. 

In many datasets, many values are overrepresented or underrepresented in few variables causing 

bias in estimating robust measurements on accuracy, recall, and precision.  

 Missing values present another source of bias causing differences in accuracy, recall, and 

precision between CARF, and other methods. In some data sets, missing values are large, in other 

datasets, missing completely at random data is not satisfied, and missing values are potentially 

concentrated in sub-samples within the given data. Imputation of missing values may result in 

differing results from those observed and reported. The type of imputation could also skew the 

estimates of accuracy, recall, and precision in one way or another. All such changes to be 

performed on missing values by Weka would carry significant consequences on the estimation of 

predictive modelling goodness or fit.  



www.manaraa.com

 

113 
 

 The orthogonality of the datasets also is potentially responsible for the differing accuracy, 

recall, and precision values indicated. Some datasets have scales, indexes, and summated rating 

averages, which are combinations of existing features. CARF does not perform as well as the other 

methods when sums or linear scales exist within the dataset. Therefore, on the ill-performing 

datasets observed, many features included were not oblique. CARF performs better when features 

are independent of each other, and correlations amongst them are low producing high factorial 

structures.  

For instance, there was a notable drop of approximately 9% when Bayes Net processed the subsets 

of CARF from the ‘Dermatology’ dataset, and the same pattern was noticed in the C4.5 results. 

We investigated this case and noticed that the dataset is multi-class in nature (consists of more 

than two class labels) and contains primarily linear features and just one categorical feature.  For 

this dataset, it seems that a large number of clinical features with little variability contributed 

minimally to the diagnosis of ‘Erythemato-squamous’ disease in dermatology. Since this disease 

overlaps in many histopathological features, and CARF retains only non-overlapping features, 

many overlapping attributes are not retained by the CARF method. Another probable reason could 

be associated with the progression of the disease, and that features at one stage can be insignificant, 

but later on, it can be significant. Thus, the longitudinal property may play a role in feature 

assessment.  

  

 The obtained results of recall and precision rates are consistent and pinpoint that both 

classification algorithms were able to identify the proportion of positive predictions that were 

actually positive from the different subsets of features offered using the cut-off values of the 

MutInfoMethod search methods, and for all considered feature selection methods. This indeed 

shows the effectiveness of the proposed search procedure, not only in cutting down the search 



www.manaraa.com

 

114 
 

space of datasets considered, but also in offering high impactful features and for all feature 

selection methods. This can provide the below key competencies, especially when integrated with 

the CARF feature selection method:  

• Substantial reduction in the search space of the dataset  

• Few different features are retained yet with competitive performance in terms of recall, 

precision, and accuracy   

• Expert and novice users can exploit the few number of features easily  

• Simpler classification models are offered when processing the few features which can be 

easily understood by users.  

Overall, when employing the MutInfoMethod search method, CARF was superior to the other 

feature selection methods in minimizing the search space of the various datasets considered. More 

importantly, models derived against the subsets of features selected by CARF from two different 

machine learning algorithms showed good performance with respect to precision, recall, and 

accuracy when compared with models derived by the same algorithms against much larger features 

sets, i.e. sets selected by other feature selection methods. These results revealed that CARF was 

able to remove feature-to-feature similarity due to the non-overlapping induction process it adopts 

in growing and pruning the rules, which is subsequently employed to assign scores to the available 

features in the training dataset.  

 

4.7 Chapter Summary 

In this chapter we presented the implementation, testing, and validation of the proposed feature 

selection and search methods, i.e. CARF and MutInfoMethod. Specifically, we show the UIs for 
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CARF and the MutInfoMethod and how to set up its primary parameters prior to experimentation. 

We show how CARF was integrated within the Weka environment to enable reusability of 

different existing methods and evaluation measures without having to re-code everything from 

scratch. This chapter also introduced evaluation measures such as recall, precision, and predictive 

accuracy in the experiments as well as in the datasets, and characteristics such as their size, number 

of features, type, and class balance status.    

In the next chapter we highlight the conclusions of the dissertation. 
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Chapter Five  

5 Conclusions  

A key factor that influences the quality of the classification outcome in machine learning tasks is 

the choice of a relevant set of features from the input dataset for data processing. This process, 

known as feature selection, aims to discard irrelevant features as early as possible and then offer 

the smallest subset of relevant features to the learning algorithm to simplify the learning phase and 

improve the performance. This research investigated different issues related to an important feature 

selection approach named Filtering. It utilizes mathematical models to determine each feature’s 

merits during data pre-processing and leaves the difficult task of choosing the final subset of 

features to the end-user. These issues included, but were not limited to, the reduction of the 

similarity among retained subsets of features by the Filtering approach, computing an indicative 

measure that can differentiate between relevant and irrelevant features, and providing the end-user 

with fewer yet influential subsets of features to improve the manual process of selecting features. 

In response to the aforementioned issues, which have been explained in detail in Chapter One, this 

research proposed a new Filtering method called CARF which is based on inducing simple rules 

from the classification datasets. CARF is coupled with a new cut-off procedure called 

MutInfMethod which calculates an indicative threshold to help the user identify the number of 

features. The CARF method learns rules with 1-item in the dataset and from these computes 

weights that are intelligently assigned to the features in the dataset. The transformation of the data 

format from LS to IS during the rule discovery process makes the proposed method simple and 

efficient. The distinguishing characteristic of the CARF method is that it erases redundant rules as 

early as possible; this has ensured that the rules generated are useful. We think that will be 
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advantageous as fewer features will be retained, making the process more efficient. We also 

investigated the vital issue in feature selection of reducing the time for checking the results of 

Filtering methods and have thus proposed MutInfMethod—an automatically generated cut-off 

threshold procedure to distinguish between features. This new cut-off procedure suggests the 

number of features to be chosen by the end-user without the results having to be manually checked. 

 In Chapter Four, we show the implementation of CARF and MutInfMethods in Java and their 

integration into the Weka open source machine learning platform. More importantly, we reveal the 

true perfromance of CARF on a large number of real datasets with 12–3002 available features and 

compare its performance with other known Filtering methods using machine learning algorithms. 

Experimentation using different datasets from the Kaggle and UCI data repositories, three common 

feature selection methods, and two classification algorithms, has been executed to show the true 

performance of the proposed feature selection method. The classification algorithms were adopted 

to derive classifiers from the different feature sets recommended by the considered feature 

selection methods. The results analysis shows that CARF continuously selects fewer features than 

GR, ReliefF, and CST on all datasets considered reducing the search space significantly and with 

a relative difference of 41%–99%. The classifiers produced by the C4.5 and Bayes Net algorithms 

showed that the subsets of features retained by CARF when using the proposed cut-off procedure 

are highly competitive in terms of recall, precision, and accuracy rates when contrasted with 

models selected by the other feature selection methods. These empirical results reveal that despite 

fewer features being retained by CARF, the models derived from machine learning algorithms 

against these subsets maintained competitive predictive power. 

Additionally, the experimental results showed that the cut-off procedure is independent from any 

feature selection methods, and when integrated with methods such as GR, CST, ReliefF, and 
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CARF, computes a cut-off that recommends fewer features—this can be useful for the end-user in 

understanding the dataset and its impactful features. These cut-offs that are computed by the  

proposed method in an automated manner are helpful for users to decide which features to select, 

relaxing the complicated process of filtering the results of feature selection. In the case of CARF 

and the new cut-off procedure, the search space of features was reduced for most of the considered 

datasets and without influencing the models’ performance when classification algorithms were 

applied. In addition, the search space minimization impacted the models derived positively by 

simplifying them for decision makers and users, making them easy to understand and manage 

when compared with models derived from a large number of features.  
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